M.SC., BIOTECHNOLOGY

SYLLABUS

AUGUST- 2023

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

Part	List of Courses	Credits	No. of Hours
	Core – I	4	5
	Core – II	4	5
	Core – III	4	5
	Elective – I	2	4
	Elective – II	2	3
	Practical-I	6	8
		20	30

First Year – Semester – I

Semester-II

Part	List of Courses	Credits	No. of Hours
	Core – IV	4	4
	Core – V	4	4
	Core – VI	4	4
	Elective –III	4	4
	Elective –IV	2	2
	Practical -II	2	2
	Skill enhancement Course-1	2	2
		22	30

	METHODS OF EVALUATION	
Internal	Continuous Internal Assessment Test	
Evaluation	Assignments / Snap Test / Quiz	25 Marks
	Seminars	
	Attendance and Class Participation	
External	End Semester Examination	75 Marks
Evaluation		
	Total	100 Marks
	METHODS OF ASSESSMENT	
Rememberi	Thelowestlevelofquestionsrequirestudentstorecallinformationfromthecours	secontent
ng (K1)	Knowledgequestionsusuallyrequirestudentstoidentifyinformationinthetexth	book.
Understand	• Understandingoffactsandideasbycomprehendingorganizing,comparing,	translating, interpolating and interp
ing (K2)	retingintheirownwords.	
	Thequestionsgobeyondsimplerecallandrequirestudentstocombinedatatog	gether
Applicatio	Studentshavetosolveproblemsbyusing/applyingaconceptlearnedinthecla	ssroom.
n (K3)	• Studentsmust usetheir knowledgetodetermineaexactresponse.	
Analyze	Analyzingthequestionisonethatasksthestudentstobreakdownsomethingir	ntoitscomponentparts.
(K4)	Analyzingrequiresstudentstoidentifyreasonscausesormotivesandreachco	onclusionsorgeneralizations.
Evaluate	• Evaluationrequiresanindividualtomakejudgmentonsomething.	
(K5)	Questionstobeaskedtojudgethevalueofanidea,acharacter,aworkofart,oras	solutiontoaproblem.
	• Studentsareengagedindecision-makingandproblem-solving.	
	• Evaluation questions do not have single right answers.	
Create	Thequestionsofthiscategorychallengestudentstogetengagedincreativeand	doriginalthinking.
(K6)	Developingoriginalideasandproblemsolvingskills	-

Structure for Semester I & II

Study Components	ins. hrs /week	Credit	Title of the Dance	
Course Title	nis / week		Title of the Paper	
Ś	SEMESTER I			
Core Course I	5	4	Biochemistry	
Core Course II	5	4	Cell and Molecular Biology	
Core Course III	5	4	Microbiology	
Elective I	4	2	A. GeneticsB. VirologyC. Basic Analytical Methods	
Elective-II	3	2	A. ENZYME TECHNOLOGY B. DAIRY TECHNOLOGY C. PHARMACETICAL TECHNOLOGY	
Practical-I	8	4	Practical 1-Lab in Biochemistry and Cell & Molecular Biology & Microbiology	
	30	20		
s	EMESTER II			
Core IV	5	4	Immunology	
Core V	5	4	Genetic Engineering	
Core VI	5	4	Developmental and Stem cell Bitgy	

	30	22	
			C. Validation of Medicinal Plants
Enhancement Course [SEC] - I			B. Vermiculture Technology
Skill	2	2	A. Mushroom Cultivation and Apiculture
Practical-II	6	4	Practical –II- Lab in Immunology & Genetic Engineering
			C. Herbal Biotechnology
			B. Environmental Sciences
Elective - III	3	2	A. GENOMICS & PROTEOMICS
			C. Biodiversity
			B. Food and Nutrition
ELECTIVE - IV	4	2	A. Medical LaboratoryTechnology

SEMESTER -1

PAPER 1: BIOCHEMISTRY

Paper code: Biochemistry

Hours/Week:5

Credits: 4

Subject:

Aim: To enable the students to understand the basic concepts of biochemistry and biomolecules and also to learn the various metabolic cycles and also to analyze the significance of biochemical findings

Course Objectives

- 1. To learn the physical and chemical nature of Biomolecules
- 2. To learn various types of biomolecules
- 3. To develop knowledge on intermediary metabolism of CHO, Proteins, and Lipids
- 4. To teach the basics and advance of enzymes and their classifications
- 5. To develop a piece of knowledge in clinical biochemistry.

Course Out Comes

1. After studied unit 1, the students will be able to identify the nature of

solvents and solutionsconcerning pH and its important

2. After studied unit 2, the students will be able to classify carbohydrates,

proteins lipids, and nucleic acids of biomolecules

3. After studied unit 3, the students will be able to describe the

biomolecules involved inintermediary metabolism

4. After studied unit 4, the students will be able to explain enzymes and enzyme kinetics5. After studied unit 5, the students will be able to apply Biochemistry, in

clinical biochemistryprocedures.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Units		Cours	e Contents		Teaching hours		
Unit I	Basic Co Normali pH, pK, bonds (h						
Unit-II	chemistr nomencl amino a	Biomolecules: Definitions, nomenclature, classification, structure chemistry, and properties of carbohydrates, Definitions nomenclature, classification, structure, chemistry, and properties of amino acids and proteins (hemoglobin, myoglobin, and plasma proteins), lipids and Nucleic acids,					
Unit-III	Metabolism: Metabolism of Carbohydrates, EMP, TCA, HMP. 12 hour Glycogen metabolism, Gluconeogenesis. Amino Acids- Transamination, Deamination, Urea cycle. Lipids and Nucleic Acids-Their Biosynthesis. Mechanism of Oxidative Phosphorylation and Its Inhibitors, Uncouplers, Photophosphorylation						
Unit-IV	Enzymology: Enzymes: general aspects (classifications and 12 hours structure). The allosteric mechanism, regulatory and active sites, and active energy. Iso-enzymes. Enzyme kinetics (MM, LB plot, Km) and hormones.						
Unit-V							
Unit-VI	I	nternal Assessments, S	Seminars, and	Guest lecture	05 hours		
Internal	Assesmo	Total Teachin nt Methods: (25 marks			65		
Distribu	tion for	Test (CIA I + CIA	Seminars	Assignment	Total marks		
inter Marks	nals	II + CIA III) 15	05	05	25		

Textbook:

- 1. J.L. Jain, S. Jain and N. Jain. Fundamentals of Biochemistry. S. Chand & Co, 2016.
- 2. Ambika Shanmugam. Biochemistry. Published by Wolters Kluwer, 8th Edition, 2016.
- 3. A.C. Deb. Fundamental of Biochemistry. New Central Book Agency, 2012
- 4. Biochemistry ,7th Edition, jermy M.Berg John,L .Tymoczko,Lubertstryer 2012.W.H,freeman & company ,newYork 2.
- 5. Molecular Bio methods handbook, 2nd edition R.Rapley & J.M Walker, 2008, Humanapress.
- 6. Principles of Biochmeistry, 5th Edition AL. Lehninger ,D.L. Nelson and M.M Cox ., 2008.worth publishers, NewYork.
- Biochemistry 4THEdition,G.Zubay,1998.Mc Millan publishing Co.NewYork.
 1. Harper's Biochemistry,29th Edition-Rober K.Murray,Daryl
 - K.Grammer,2012 McGrawHill, lange Medical Books
 - Understanding enzymes -5theditionTrevorpalmer,Prentice Hall/Ellias Horwood1995
 3. Text Book Medical Biochemistry M.N.Chatterjee 8th edition Jaypee brothers Medicalpublishers2013

Reference Book:

2.

1. D.L. Nelson and M.M. Cox. Lehninger Principles of Biochemistry, WH FreemanPublishers, 7th Edition, 2017.

2. V.W. Rodwell, D.A. Bender, K.M. Botham, P.J. Kennell and P.A. Weil. Harper's Illustrated Biochemistry, 30th Edition. McGraw Hill, 2015.

3. Wilson and Walker. Principles and Techniques of Practical Biochemsitry, 6th edition, Cambridge University, Press. 2005.

4. Upadhyaya A Upadhyaya K and Nath. Biophysical Chemistry: Principles and Techniques, 3rd Edition. Himalayan publications, 2009.

5. M.N. Chatterjee and Rana Shinde, Textbook of Medical Biochemistry, 8th Edition. Jaypee Brothers Medical Publishers (P) Ltd., 2012.

6. Biochemistry – 4th edition Donald voet and Judith G.Voet ,VP Publishers 2011 steitz and A.M.Weiner ,The Benjamin /CUMMINGS publ.Co.,Inc.,California,2013

7. Genes VI(9th Ed).Benjamin Lewin, oxford universitypress,uk.,2007 10. Molecular biology of cell (5th edition)

brucealberts, alexander johnson, Julian lewis, martinraff, keith Roberts, peterwalter , garland science publications. 2008

8. Molecular Biology (5th edition).weaver .R.F,McGraw Hillpublications,2011. Cell and molecular biology : concepts and experiments (5th edition).geraldkarp,wiley publications,2013

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites, etc.] <u>https://nptel.ac.in/courses/104105076</u>, <u>https://oli.cmu.edu/courses/biochemistry-open-free/</u>, <u>https://onlinecourses.nptel.ac.in/noc20_cy10/preview</u>,

E-Books: https://www.pdfdrive.com/biochemistry-books.html,

E-journals: Process Biochemistry (Elsevier), Journal of Cellular Biochemistry (Wiley)

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	М	М	М	S	S	S
CO2	М	М	М	S	S	М	S	S	М	М
CO3	М	М	М	S	S	S	S	М	М	М
CO4	S	S	S	Μ	М	М	S	S	М	S
CO5	М	М	М	S	М	S	М	М	S	S

PO - Programme Outcome, CO - Course outcome, S - Strong, M - Medium, L - Low

PAPER 2: CELL AND MOLECULAR BIOLOGY

Credits: 4 Hours of teaching: 5 Theory

Paper type: Core

Overall Course Objectives: Understanding the structural and functional aspects of the cell provides the students with a strong foundation in the molecular mechanism underlying cellular functions.

Course objectives :

- 1. To understand the basic concepts of the prokaryotic and eukaryotic cells.
- 2. To Understand the individual and coordinated functions of various cell organelles.

3. To familiarize the student with various aspects of cell and molecular biology streams including cellular organization and their interactions in DNA replication, protein biosynthesis, and translational regulation

4. To develop a comprehensive understanding of the complete cellular and molecular function of cell organelles in terms of cell-to-cell interaction, gene regulation, cellular signaling

5. To impart the molecular biology knowledge in applications of various human health care

Course OutComes

1. After studied unit-1, the student will be able to equip with a basic knowledge of thestructural and functional properties of cells.

2. After studied unit-2, the student will be able to understand process of cell division and replication process.

3. After studied unit-3, the student will be able to understand the occurrence of central dogma of life in the cell and the machineries involved to initiate and inhibit RNA and proteinsynthesis.

4. After studied unit-4, the student will be able to control of gene expressions inprokaryotes and eukaryotes and transposable elements.

5. After studied unit-5, the student will be able to understand mechanism of epigenetic controlsand cancer biology.

Table (Put Yes / No in the appropriate box)

Unit	i.	ii.	iii. Applying	iv.	v.	vi. Creating
	Remembering	Understanding		Analyzing	Evaluating	
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	No	Yes	No	Yes	Yes	Yes
4	No	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

UNIT I	Cell Biology: Structure and function of cells in prokaryotes and eukaryotes; Structure and organization of Membrane - Membrane Model, active and passive, transport channels and pumps., Structure& Biogenesis of Mitochondria and Chloroplast. Structure or Endoplasmic reticulum, Golgi complex, lysosomes.	ehours z
UNIT-II	Cell division: Mitosis, Meiosis, regulation of cell cycle; factors regulating cell cycle. Nucleic acid structure,Genome Organization DNA replication: Enzymes and mechanisms of DNA replication in prokaryotes and eukaryotes, Telomeres, telomerase and enc replication. Role of telomerase in aging and cancer. DNA replication models DNA damage, Mutations, DNA repair and recombination.	.hours 1 1
UNIT – III	Transcription: Basic mechanism in prokaryotes and eukaryotes. RNA polymerase, Reverse transcriptase and regulation. Post- transcriptiona processing: 5'-Cap formation; 3'-end processing and polyadenylation splicing: RNA editing; Nuclear export of mRNA; mRNA stability.Translation-Prokaryotic and eukaryotic translation, the translation machinery, Mechanisms of initiation, elongation and termination, Regulation of translation, co-and post-translational modifications of proteins and localization.	hours ; ;
UNIT – IV	Gene regulation: Prokaryotic gene regulation- Operon concept ; Lac operon and tryptophan operon. Eukaryotic gene regulation: Chromatin Structure, Regulation at transcriptional Level: DNA binding domains of the regulatory proteins. Biochemistry and applications of ribozyme technologies. Transposable genetic elements	nhours s
UNIT-V	Epigenetics: Epigenetic regulation of gene expression, Modifications Cancer Epigenetics. Cancer Biology: Viral and cellular oncogenes Tumor suppressor genes - Structure, function and mechanism of action of pRB and p53, p21, BRACA1.Oncogenes as transcriptional activators.	;hours
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lectures	5 hours
Total Lecture	hours 65 hours	65 hours

Internal Assessment Methods: (25 marks) 11

Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks
internals	II + CIA III)			
Marks	15	05	05	25

Text Books

Molecular cell Biology, by Darnell, Lodish, Baltimore, Scientific American Books, Inc., 1994. Molecular and cellular Biology, Stephen L.Wolfe, Wadsworth PublishingCompany, 1993. Cell and Molecular Biology: Concepts and Experiments 5th Ed, Gerald Karp. Wiley publications, 2013.

- 1. Cell biology D E SadavaCBS Publishers & Distributors, 2009
- 2. Reference books
- 3. Molecular and cellular Biology, Stephen L.Wolfe, Wadsworth Publishing Company, 1993
- Molecular Biology LabFax, T.A. Brown (Ed.), Bios Scientific Publishers Ltd., Oxford, 1991
- 5. Molecular Biology LabFax, T.A. Brown (Ed.), Bios Scientific Publishers Ltd., Oxford,1991.
- 6. Molecular Biology of the Gene (4th Edition), J.D.Watson, N.H.Hopkins, J.W.Roberts,
- 7. J.A. Steitz and A.M.Weiner, The Benjamin/Cummings Publ. Co., Inc., California, 1987.
- 8. Genes VI (6th Edition) Benjamin Lewin, Oxford University Press, U.K., 1998
- 9. Molecular biology of cell Albert Bruce et al., 1994 3rdEd
- 10. Molecular Biology-Weaver. R. F. 3rd ed. Mc Graw Hill publication ,2005
- 11. The Molecular Biology of Cancer: S. Pelengaris, M. Khan. Blackwell Publication.2002

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites, etc.]

- 1. Swayam- Molecular biology course by Dr.Nayan K. Jain, Gujarat University
- 2. Swayam- Cell Biology by Dr K. Sanatombi
- 3. NPTEL Molecular Cell Biology by Prof.D. Karunagaran
- 4. <u>https://www.coursera.org/courses?query=molecular%20biology</u>
- 5. https://www.cdc.gov/labtraining/training-courses/basic-molecular-biology/index.html

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	М	S	S	S	S	М
CO2	S	S	Μ	S	S	S	S	М	
CO3	S	S	S	S	S	М	S	S	
CO4	S	М	S	S	M	S	S	S	
CO5	S	S	S	S	S	S	S	S	. N

PO - Programme Outcome, CO - Course outcome S - Strong, = 3, M - Medium, L - Low (may beavoided)

PAPER 3: MICROBIOLOGY

Paper Code: MicrobiologyHours/Week: 5 Subject:

Credits: 4

Aim: Studying the diversity and activity of microorganisms in their natural environment, their mutual interactions, and their survival and adaptation strategies.

Course Objectives

1. To understand the History of Microbiology.

- 2. To well understand the Nutritional classification of bacteria, etc.
- 3. To obtain knowledge about Sterilization and Disinfection.
- 4. To obtain knowledge of Microbial diversity.
- 5. To know the basic Microbial community in natural habitats.

Course Out Comes

1. After studying unit 1 the students will be able to identify the Classification of microorganismspractical's.

2. After studying unit 2 the students will be able to identify and differentiate the pure culturetechnique.

3. After studying unit 3 the students will be able to identify and describe the chemotherapeuticagent

4. After studying unit 4 the students will be able to identify and explain enzymes and their egulations by kinetic parameters

5. After studying unit 5 the students will be able to identify and cross-examine theBiotechnological applications of Extremophiles

0		<u>`</u>					
	Unit	i.	ii.	iii.	iv.	v.	vi.
		Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
	1	Yes	Yes	Yes	Yes	Yes	Yes
	2	Yes	Yes	Yes	Yes	No	No
	3	No	Yes	No	Yes	Yes	Yes
	4	No	No	Yes	Yes	Yes	Yes
	5	Yes	Yes	No	Yes	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

Units		Teaching Hours
Unit-I	History of Microbiology - Classification of microorganism – Kingdom - Protista, Prokaryotic and eukaryotic microorganisms, Five kingdom concept of classification, Archaebacteria, Eubacteria, and eukaryotes. Microscope - Light field, Dark field, Fluorescent and Electron microscope, Prokaryotic and Eukaryotic cell structure. Staining techniques - Simple and Differential staining.	
Unit-II	Nutritional classification of bacteria, Isolation, cultivation, enumeration, and preservation of microbes; Culture media and its types - Pure culture technique - Growth curve; Axenic culture, Synchronous culture, Continuous culture; Effect of physical and chemical factors on microbial growth.	
Unit-III	Sterilization and Disinfection: Moist heat, Dry heat, Radiation, Filtration, Phenols, Halogens, Phenol coefficient method. Antibiotics - Inhibitors of Nucleic acid, protein, and cell wall synthesis. Chemotherapeutic agents - Antimicrobial susceptibility test.	
Unit-IV	Microbial diversity- methods to assess microbial diversity, Culture dependent, and culture-independent methods. Molecular analysis of bacterial community; Denaturating Gradient Gel Electrophoresis (DGGE), Terminal Restriction Fragment Length (TRFL) Polymorphism (T- RFLP), Amplified Ribosomal DNA and Restriction Analysis(ARDRA).	
Unit-V	Microbial community in natural habitats – air, water, soil, food, and milk. Food and milk-borne diseases, Extremophiles-habitant & Classification, Halophiles, Thermophiles, Alkaliphiles, Acidophiles, Biotechnological applications of Extremophiles.	
Unit-VI	Internal Assessments, Seminars, and Guest Lectures	05 hours
	Total Teaching hours	65

Internal Assessment Methods: (25 marks)

	Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
ľ	Marks	15	05	05	25

Text book:

1. Microbiology 3rd Edition by <u>Dave Wessner</u> (Author), <u>Christine Dupont</u> (Author), <u>TrevorCharles</u> (Author), <u>Josh Neufeld</u> (Author) 3rd edition (December 3, 2020)

- 2. Fundamentals of Microbiology 12th Edition by Jeffrey C. Pommerville (Author) 12th edition (March 29, 2021)
- 3. Burton's Microbiology for the Health Sciences 11th Edition by <u>Paul G. Engelkirk</u> (Author) 11th edition (October 10, 2018)
- 4. Brock Biology of Microorganisms plus Pearson Mastering Microbiology with Pearson eText, Global Edition 15th Edition 15th edition (March 27, 2018)
- 5. Microbiology: An Evolving Science Fifth Edition by Joan L. Slonczewski (Author), John W. Foster (Author), Erik R. Zinser (Author) Fifth edition (July 1, 2020)
- 6. Microbiology with Diseases by Taxonomy, Loose-Leaf Plus Mastering Microbiology with Pearson eText -- Access Card Package (6th Edition) 6th Edition 6th edition (January 14, 2019) **Reference Book:**
- Medical Microbiology: A Guide to Microbial Infections: Pathogenesis, Immunity, Laboratory Diagnosis and Control. With STUDENT CONSULT Online Access (Greenwood,Medical Microbiology) 17th Edition by <u>David Greenwood BSc PhD DSc FRCPath</u> (Author), <u>Richard C. B.</u> <u>Slack MA MB BChir FFPHM MRCPath DRCOG</u> (Author), <u>John F. Peutherer BSc MB ChB MD</u> <u>FRCPath FRCPE</u> (Author), <u>& 1 more</u> Churchill Livingstone; 17th edition (June 6, 2007)
- 2. Microbiology Experiments: A Health Science Perspective Paperback International Edition, January 1, 2018MC GRAW HILL; 9th edition (January 1, 2018)
- 3. Hugo and Russell's Pharmaceutical Microbiology, 8th Edition 8th Editionby <u>Denyer</u> (Author) Wiley-Blackwell; 8th edition (August 12, 2011)
- 4. Clinical Bacteriology Hardcover August 1, 1980 by <u>E Joan Stokes</u> E Arnold; Fifth Edition (August 1, 1980)
- 5. Review of Medical Microbiology and Immunology (Medical Microbiology & Immunology (Levinson)) 9th Edition (March 10, 2006)

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	Μ	М	М	М	М	S	S	S
CO2	М	М	Μ	S	S	М	S	S	М	М
CO3	М	М	М	S	М	S	S	М	М	М
CO4	S	М	S	М	М	S	S	S	М	S
CO5	М	М	М	S	М	S	М	М	S	М

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome S-Strong, M-Medium, L-Low (may be avoided)

ELECTIVE 1 (A) GENETICS

Subject: Genetics

Hours/Week: 4

Credits: 2

Aim: To enable us to explore many different components of living systems and the advent of proteomics will made it possible to identify a broad spectrum of proteins in living systems. This elective subject will help to understand basic principles and applications in genomics and proteomics.

Course objectives:

- 1. To provide the basic knowledge of genetics in higher eukaryotic domains and over all concepts of Mendelian genetics.
- 2. To understand about genetic inheritance and linkages
- 3. To provide the basic concept sex determination
- 4. To understand about genetic code, mutation and regulations
- 5. To Enrich the students' knowledge with respect to genetic engineering, transgenesis and ethics **Course Out Comes (five outcomes for each units should be mentioned)**
- 1. After studied unit-1, the student will be able to know about Mendelian laws.
- 2. After studied unit-2, the student will be able to understand how gene inherited
- 3. After studied unit-3, the student will be able to understand about sex determination.
- 4. After studied unit-4, the student will be able to gene relgulations.
- 5. After studied unit-5, the student will be able to know about ethics and transgenesis.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

UNIT I UNIT-II	 History of Genetics: Definition and scope of Genetics- Pre- mendelian genetic concepts. Basis of Mendelian Inheritance and Mendelian genetics. Chromosome theory of linkage, crossing over recombinations and mapping of genes on chromosomes Blood Groups and their Inheritance in Human – Linkage and Crossing Over:- Drosophila – Morgans" Experiments – Complete and Incomplete Linkage, Linkage Groups, Crossing Over types, Mechanisms – Cytological Evidence for Crossing Over, Mapping of genes of Complete and Crossing Over 	8 hours
	Chromosomes – Interference and Coincidence.	
UNIT – III	Sex Linkage in Drosophila and Man, Sex influenced and Sex Limited Genes – Non- Disjunction and Gynandromorphs – Cytoplasmic Inheritance – Meternal Effect on Limnaea(Shell Coiling), Male Sterlity (Rode''s Experiment)	
UNIT – IV	Nature and Function of Genetic Material – Genetic code – Why the genetic code is comma less, non ambiguous, degenerate triplet code. Fine Structure of the Gene .Gene Regulation – Operon Concept – Lac Operon – Positive and Negative Regulation. Mutation – Molecular Basis of Mutation, Types of Mutation, Mutagens, Mutable and Mutator Genes. Chromosomal Aberrations – Numerical and Structural Examples from Human.	
UNIT-V	etic engineering – Objectives, tools, gene cloning, and gene isolation. Transgenic plants and animals, Animal Breeding – Heterosis, Inbreeding, Out Breeding, Out Crossing, Hybrid Vigour. Population Genetics- Hardy Weinberg Law – Gene Frequency, Factors Affecting Gene Frequency, Eugenics, Euphenics and Ethenics, Bioethics.	, L
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	50 hours

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Books

- 1. Gardner et al (1991). Principles of Genetics. John Wiley.
- 2. Hartl. D.L. A primer of population genetics. III edition, Sinauer associates inc. Sunderland, 2000
- 3. Human genetics, A. Gardner, R. T. Howell and T. Davies, Published by Vinod Vasishtha for Viva Books private limited, 2008.
- 4. The science of Genetics by Alan G. Atherly, Jack. R, Girton, Jhon. F, Mc Donald. Sounderscollege publishers.

Reference Books

- 1. Strachan and Read (2003).Human Molecular Genetics. Wiley.
- 2. Pasternak (2005). An Introduction to Molecular Human Genetics. Fritzgarald.
- 3. Prichard &Korf (2004).Medical Genetics a ta Glance. Blackwell.
- Manu L Lothari, Lopa A Mehta, sadhana S Roy Choudhury (2009). Essential of HumanGenetics (Universities Press India ltd) Publishing.

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. <u>https://www.classcentral.com/course/swayam-genetics-and-genomics-17623</u> 2.

https://nptel.ac.in/courses/102/104/102104052/

3. https://www.coursera.org/learn/genetics-evolution

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	S	S	S	М	S	S	S	S	М
CO2	S	S	Μ	S	S	S	S	М	
CO3	S	S	S	S	S	М	S	S	
CO4	S	М	S	S	М	S	S	S	
CO5	S	S	S	S	S	S	S	S	N

PO - Programme Outcome, CO - Course outcome S - Strong, M - Medium, L - Low(may be avoided)

ELECTIVE 1: (B) VIROLOGY

Subject: Virology

Hours/Week: 4

Credit: 2

Aim: To understand the biology of viruses, pathogenesis, clinical features, epidemiology, and prophylaxis of dreadful viral infections in susceptible hosts.

Course Objectives

- 1. Contrast differences in virus architecture and classification.
- 2. To understand the viral diagnostic and detection methods.
- 3. Distinguish characteristics of normal cells and virus-infected cells.
- 4. Explain and apply methods used in research and diagnosis of viral diseases.
- 5. Describe cellular and therapeutic antiviral strategies and social stigmas against infected individuals.

Course Outcomes (five outcomes for each unit should be mentioned)

- 1. After studied unit-1, the student will be able to-describe and review the General Virology and cultivation of viruses
- 2. After studied unit-2, the student will be able to -know the Viral diagnostic and detection methods
- 3. After studied unit-3, the student will be able to explain viral replication strategies; and compare and contrast replication mechanisms used by viruses relevant to human disease
- 4. After studied unit-4, the student will be able to discuss principles of virus pathogenesis
- 5. After studied unit-5, the student will be able to explain host antiviral immune mechanisms at a cellular and molecular level and vaccine strategies and mechanisms of antiviral drugs **Matching Table (Put Yes / No in the appropriate box)**

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	No	No	No
2	Yes	Yes	No	No	No	No
3	Yes	Yes	No	No	No	No
4	Yes	Yes	No	No	No	No
5	Yes	Yes	No	No	No	No

Units		eaching
	Course Contents	hours
Unit I	General Virology: Structure of viruses: Enveloped and non-enveloped viruses, Capsid symmetries-icosahedral, polyhedral and helical, structural proteins- matrix proteins and lipoproteins, viral genomic organization and replication- types of nucleic acids, protein-nucleic-acid interactions and genome packaging, Virus related structures-viroids and prions. Cultivation of viruses: Inovo, In vivo, Ex vivo/In vitro. Cytopathic effect-pock forming unit.	
Unit-II	Viral diagnostic and detection methods: Sample processing-enrichment andconcentration, Direct methods of detection-light microscopy (inclusion bodies), electron microscopy, Immuno diagnosis, hemagglutination, Complement fixation, neutralization, Western blot, Radioactive Immuno precipitation Assay (RIPA), Flow Cytometry and Immuno histochemistry. Nucleic acid-based diagnosis: Nucleic acid hybridization, PCR, microarray and nucleotide sequencing, LINE probe assay.	
Unit-III	Bacterio phages and plant viruses: Bacterio phage: Morphology, genome organization, classification-Lifecycle-Lytic and Lysogenic Cycle, Head and tail phages-T4 phage- phage-Filamentous Bacteriophages-174- M13,phage therapy for control of bacterial poultry diseases. Viral Disease in Plants: Histological, physiological and cytological changes in infected plants, Behavior of viruses in plants, Methods for detection of plant viruses, Transmission of plant viruses through vectors-insects, nematodes and fungi.	
Unit-IV	Clinical virology: Pathogenesis, clinical symptoms, epidemiology and prophylaxis of DNA Viruses-pox virus, Herpes Virus, Adenovirus, Hepatitis Virus. RNA Viruses- Picorna Virus, Orthomyxo Virus, Rabies Virus, HIV. Oncogenic viruses; Virus-induced cell transformation and oncogenesis, Mechanism of cell transformation by tumor viruses, Retrovirus mediated oncogenesis.	
Unit-V	Viral vaccines and anti-viral drugs: Viral vaccines, conventional vaccines- killed and attenuated, Modern vaccines-DNA vaccines, recombinant DNA/protein vaccines, subunits vaccines, peptide vaccines, anti-idio type vaccines, edible vaccines, immuno modulators (cytokines), adjuvants to increase immunogenicity of vaccines. Antivirals: Interferons, 21 designing and screening for antivirals, mechanisms of action, anti retrovirals-mechanism of action and drug resistance.	
Unit-VI		5 hours
	Total Teaching hours	50

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Internal Assessment Methods: (25 marks)

Reference & Text Books:

1. Virology principles and application John Carter and Venetia Saunders (2007) John Wiley and Sons publishers.

- 2. Principles of Virology 4th edition Jane Flint.
- 3. Real -Time PCR: Current technology and applications 1st edition (2009) edited by Julie Logan et al.,

4. Analytical techniques in DNA sequencing edited by Brian K. Nunnally

- 5. Medical Microbiology: with student consult by Patrick R. Murray Ph.D. (Author), Ken S. Rosenthal PhD Saunders: 7th edition.
- 6. Antiviral Agents, Vaccines and Immunotherapies. Stephen K. Trying. October 2004. Marcel Dekker.

Course Material:

- 1. International Congress on Taxonomy of Viruses ;http://WWW.ncbi.nlm.nih.gov/ICTV
- David M., Peter M. Howley, Diane E. Griffin, Rober 2. Knipe t A.Lamb,Malcolm A.

Martin, BernardRoizman, Stephen E. Straus, (2007), Field's Virology, 5th Ed. Lippincott Williams &Wilkins

3. Cann Alan j, (2000), DNA virus Replication, Oxford University press

4. https://www.yourgenome.org/facts/what-is-PCR-polymerase-chain-reaction.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low (may beavoided)

ELECTIVE 1: (C) BASIC ANALYTICAL METHODS

Subject: Basic Analytical Methods (Core Elective) Hours/Week: 4 Credits: 2

Aim: To provide knowledge of various analytical techniques in biological researchCourse Objectives

- 1. To learn the principles of the various analytical instrument.
- 2. To teach the SOP of analytical instruments.
- 3. To study the different chromatography separation methodologies
- 4. To study different electrophoresis isolation methodologies
- 5. To learn advanced microscopic methods in image processing

Course Outcomes:

1. After studied unit 1 the students will be able to know the significance of instruments concerningdiagnostic procedures.

2. After studied unit 2 the students will be able to handle qualitative and quantitative chromatographictechniques

3. After studied unit 3 the students will be able to handle centrifugation and separate samples forfurther practical's/research

4. After studied unit 4 the students will be able to handle different qualitative and quantitativeelectrophoresis techniques

5. After studied unit 5 the students will be able to handle microscopes and validate microscopicimages.

Unit/	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

Units	Course Constants	Teaching
Units	Course Contents	hours
Unit I	Electrochemical techniques- basic principles- The pH electrode- Ion- selective gas- sensing and oxygen electrodes. Elementary details of biosensors. Beer- Lambert law, light absorption, and its transmittance. Basic principles & brief outline of instrumentation of UV- Visible Spectroscopy: Infrared Spectroscopy. NMR. Mass spectrometry. Spectrofluorometric, Flame photometry, Atomic absorption spectrophotometry– Principles, instrumentation, and applications	
Unit-II	Introduction & classification of chromatography. Theory, instrumentation & applications of Column chromatography, TLC, Paper chromatography, GC, HPTLC, HPLC - detection methods, and systems qualitative and quantitative aspects applications	
Unit-III	Centrifugation- basic principles-instrumentation-centrifugation units. Nature of particles centrifugation methods and accessories. Sedimentation velocity- sedimentation equilibrium-cell fractionation method. Differential, density gradient, isopycnic, and equilibrium centrifugation. Preparative and analytical ultracentrifugation techniques. Isoelectric focusing, blotting methods, western- southern and northern- application- methods in life sciences and biotechnology.	
Unit-IV	General principles. Factors affecting the migration rate – sample, electric field, buffer, and supporting medium. Tiselius moving boundary electrophoresis. PAGE. SDS– PAGE. Pulse-field gel electrophoresis. Cellulose acetate membrane electrophoresis. Agarose gel electrophoresis	
Unit-V	Radio isotopic techniques: Introduction to radioisotopes, Detection. Measurement and uses of radioisotopes, Counting efficiency and autoradiography. Principles of microscopy, Fluorescent, Transmission and Scanning electron microscopy, confocal microscopy. Biotechnological applications Microscopy. Microtome analysis and measurement of images	
Unit-VI	Internal Assessments, Seminars, and Guest lecture	5 hours
	Total Teaching hours	50

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Textbook:

- 1. Keith Wilson, John M Walker. Principles and techniques of biochemistry and molecularbiology. Cambridge University Press. 7th edition, 2017.
- 2. Shawney. Practical Biochemistry. Narosa Publishing, 1995.
- 3. Upadhyaya A Upadhyaya K and Nath. Biophysical Chemistry: Principles and Techniques, 3rd Edition. Himalayan publications, 2009.
- 4. D. Frifelder and M. Malacinski. Essentials of Molecular Biology, Jones & Bartlett, 5th Edition, 2015.
- 5. R.D. Braun. Introduction to Instrumental Analysis. Pharma Book Syndicate, 2006.
- 6. Chatwal and Anand. Instrumental Methods of Analysis. 5th Edition, Himalayan publication, 2007.
- 7. Jag Mohan. Organic Spectroscopy, Principles and Application. Narosa Publishing House, 2nd Edition, 2007.

Reference Book:

1. Principles and Techniques of Practical Biochemistry (Paperback) by KeithWilson (Editor), John Walker (Editor), John M. Walker (Author) "Fifth Edition2000

2. Introductory Practical Biochemistry (Hardcover).by S. K. Sawhney; RandhirSingh (Editor)2005

3. Principles of Physical Biochemistry (2nd Edition) by Kensal E van Holde, Curtis Johnson, and Pui Shing Ho (Hardcover – April 16, 2005)

4. Physical Biochemistry: Applications to Biochemistry and Molecular Biologyby David M.Freifelder (Paperback – Aug 15,1982)

5. Instrumental Methods of Chemical Analysis by G R Chatwal and S KAnand (Hardcover –Jun1980).

Course Material:

Website links: https://www.edx.org/course/basic-analytical-chemistry,

E-Books: <u>http://shvaiko.ru/wp-content/uploads/2010/02/Analytical-Techniques-Julia-C.-Drees-Alan-H.-B.-Wu.pdf tml</u>,

https://www.uvm.edu/~gpetrucc/courses/chem196/Textbooks/Manahan%20-

%20Fundamentals%20of%20Environmental%20Chemistry/1491Ch25.pdf,E- journals: https://onlinelibrary.wiley.com/series/8247,

https://link.springer.com/chapter/10.1007/978-3-642-75490-6_15, Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	М	М	М	S	М	S	S
CO2	М	S	М	М	М	S	S	S	М	М
CO3	S	М	М	S	S	М	М	S	М	S
CO4	М	S	S	М	М	S	М	М	S	S
CO5	S	М	S	М	S	М	S	М	S	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong,\ M-Medium,\ L-Low$

ELECTIVE II : (A) ENZYME TECHNOLOGY

Paper type: Enzyme

Technology

Hours of teaching: 3

Credits: 2

Aim: To provide knowledge of various enzymes and enzyme technology applied in the industries.

Course objectives :

- 1. To Learn about the classification and structure properties of enzymes
- 2. To Understand the kinetics, catalysis and inhibitions activities of enzymes
- 3. To understand physical properties, downstream process and purification of enzymes.
- 4. To Expedite how enzymes are used as co-factors.
- 5. To Enrich the students' knowledge with respect to different applications of Enzymes

Course Out Comes (five outcomes for each units should be mentioned)

- 6. After studied unit-1, the student will be able to know about basic knowledge of enzymes
- 7. After studied unit-2, the student will be able to understand mechanism of enzyme activities
- 8. After studied unit-3, the student will be able to understand physical properties of enzyme.
- 9. After studied unit-4, the student will be able to function of enzyme in different processes.
- 10. After studied unit-5, the student will be able to know various application of enzyme technologies.

Unit	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

UNIT I	Introduction to enzymes: History of enzymes, nomenclature and classification of enzymes. Structural features of Enzymes: Chemical nature of Enzymes: amino acids, protein structure: Primary, secondary, tertiary and quartenery structure. Specificity of Enzymes: Types of specificity, the koshland "induced fit" hypothesis, strain or transition-state stabilization hypothesis.	
UNIT-II	Enzyme Catalysis and Kinetics: Factors affecting the rate of chemical reactions, kinetics of un catalyzed chemical reactions, kinetics of enzymes catalyzed reaction, methods for investigating the kinetics of enzyme- catalyzed reaction, nature of enzyme catalysis, inhibition of enzyme activity.	
UNIT – III	Extraction and purification of microbial enzymes : Importance of enzyme purification, different sources of enzymes. Extracellular an intracellular enzymes. Physical and Chemical methods used for cell disintegration. Enzyme fractionation by precipitation(using Temperature ,salt, solvent pH, etc.),liquid-liquid extraction, ionic exchange, gel chromatography, affinity chromatography and other special purification methods, Enzyme crystallization techniques. Criteria of purity of enzymes. Pitfalls in working with pure enzymes.	
UNIT – IV	Enzymes inhibition and Co-factors: Irreversible, reversible, competitive, non-competitive and un-competitive inhibition with suitable examples andtheir kinetic studies. Allosteric inhibition ,types of allosteric inhibition and their significance in metabolic regulation & their kinetic study Vitamins and their co-enzymes: Structure and functions with suitable examples ,Metallo enzymes and Metal ions as co-factors and enzymes activators.	
UNIT-V	Immobilization of microbial enzymes and Enzyme Engineering: Methods viz. adsorption, covalent bonding ,entrapment& membrane confinement and their analytical, therapeutic & industrial applications. Applications of microbial enzymes: Microbial enzymes in textile ,leather, wood industries and detergents. Enzymes in clinical diagnostics. Enzyme sensors for clinical processes and environmental analyses. Enzymes as therapeutic agents.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours	50hours

Internal Assessment Methods: (25 marks)

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Book(s)

- 1. Introduction to proteins Structure by Branden and Tooze (1998): GarlandPublishing Group.
- 2. Biotechnology . Volume 7 A- Enzymes in Biotechnology. 1983 Edited by H.J.Rehm and G.Reed. VerlagChemie.
- 3. Methods of Enzymatic analysis by Hans Ulrich, Bergmeyer, AcademicPress.
- 4. Methods in Enzymology by W.A.Wood, AcdemicPress.
- 5. Topics in Enzyme and Fermentation Biotechnology by L.N. Wiseman ,John Wileyand sons.

References Books

- 1. Enzymes by palmer(2001): Horwood publishingseries.
- 2. Fundamentals of Enzymology by price and Stevens (2002): Oxford UniversityPress.
- 3. Enzyme Technology by Helmut Uling (1998): JohnWiley.
- 4. Methods in Enzymology. Volume 22-Enzyme purification and related techniques. Edited by William B.Jakoby. Academic press, NewYork.
- 5. Allosteric Enzymes-Kinetic Behaviour. 1982. By B.I.Kurganov ,John Wiley and Sons. Inc., NewYork.
- 6. Enzymes as Drugs Edited by John S. Holcenberg and Joseph Roberts, John Wiley& sons NewYork.
- 7. Advances in Enzmology by Alton Meister, IntersciencePublishers.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low

ELECTIVE II: (B) DAIRY TECHNOLOGY

Name of the Paper: Dairy Technology

Total Hours per Week: 3

Credits: 2

Aim: To impart current knowledge of basic and applied microbiological aspects of fluid milks anddairy products for improved quality and food safety.

Course objective:

- 1. To teach the microbial knowledge in milk
- 2. To learn the processing of milk microbiological methods
- 3. To understand how the milk products are in quality make through dairy industry
- 4. To made knowledge in differentiate the traditional and industrial make dairy products and its processing
- 5. To aware the students about milk borne diseases Course outcome
- 1. After studied unit-1, the student will be able to know about basic knowledge of milk microbes and itschanges in maintaining the storage of milk.
- 2. After studied unit-2, the student will be able to understand mechanism of processing of milk throughmicrobiological methods
- 3. After studied unit-3, the student will be able to understand dairy products quality and its changes throughmicrbes
- 4. After studied unit-4, the student will be able to differentiate dairy products in industry and homemade.
- 5. After studied unit-5, the student will be able to know various application of milk and milk

borne microbialdiseases.

Unit	i. Remembering	ii.		iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

UNIT I	Common microbes in milk and their significance .sources of	12 hours
	microbial contamination of raw milk in influencing quality of milk	
	during production, collection, transformation and storage. Cleanmilk	
	production and antimicrobial systems in raw milk. Microbial	
	changes in raw milk during long storage. Microbiological grading of	L
	raw milk.	
UNIT-II	Microbiological processing techniques: bactofugation, thermization	12 hours
UNIT-II	pasteurization, sterilization boiling ,UHT, non thermal processes	12 nours
	and membrane filtration of milk role of psychrophilic mesophilic,	
	thermophilic and thermoduric bacteria in spoilage of processed	
	milks and prevention microbiological standards (BIS/PFA) of heat	
	treated fluid milks.	101
UNIT – III	Microbiological quality of dairy products; fat rich (cream and	
	butter), frozen (ice cream), concentrated (evaporated and condensed	
	milk),dried milks(roller and spray dried), infant dairy foods and	
	legal standards. Factors affecting microbial quality of these products	
	during processing, storage and distribution. Pro biotics and pre	
	biotics(GRAS), cloning - sanitation, control of micro organisms in	
	dairy processing	
UNIT – IV	Microbiology quality of traditional dairy products; heat desiccated	
	(khoa, burfi, peda, kheer), acid coagulated (paneer, chhana, rasgulla)	
	fermented (lassi, srikhand)and frozen (kulfi).sources of microbia	
	contaminants and their role in spoilage. Importance of personnel and	
	environmental hygiene on quality of traditional milk	
	products. microbiological standards for indigenous dairy foods.	
UNIT-V	Milk-borne diseases – viral and bacterial, zoonotic infections	12 hours
	,pathogens associated with fluids milks, dairy products and their	
	public health significance. sources of pathogens and their prevention	
	importance of bio flims, their role in transmission of pathogens in	
	dairy products and preventive strategies. regulatorycontrol of dairy	
	products, testing of milk and milk products, treatment of dairy	
	wastes.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	65 hours
Internal Ass	sessment Methods: (25 marks)	I

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Books:

- 1. Adams MR and Moss MO.(1995).food microbiology, the royal society ofchemistry, Cambridge.
- 2. Andrews AT, Varley J(1994) biochemistry of milk products. Royal society ofchemistry.
- 3. BanwartGJ(1989), basic food microbiology, Chapman & hall, new York.
- 4. Frazier WC and Westh off DC.(1988) food microbiology, TATA McGraw hill publishingcompany Ltd. NewDelhi.

References

- 1. Hobbs BC and Roberts D. (1993) food poisoning and food hygiene, EdwardArnold(adivision of Hodder and Stoughton),London.
- 2. May JM. (1987) modern food microbiology, CBS publishers and distributors, NewDelhi.
- 3. Robinson RK. 1990.the microbiology of milk. Elsevier applied Science.London
- 4. Edward Harth ,J.T.Steele. Applied dairy microbiology .1998. Marcel DeekerInc.
- Modi, HA (2009) dairy microbiology pointer publishers, India. Marth, E.H and steel J. L(2001) applied Dairy microbiology, 2nd Edition, Marcel Dekker, Inc.270 MadisonAvenue, new York, New York10016.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	Μ	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	Μ	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

Mapping with Programme Outcomes

 $PO-Programme\ Outcome,\ CO-Course\ outcome\ S-Strong,\ M-Medium,\ L-Low$

ELECTIVE II : (C) PHARMACEUTICAL TECHNOLOGY

Total Hours per Week: 3

Credits: 2

Aim: To impart knowledge on the importance of drug during life span. To enlighten on the biotechnological modifications in drugs. To find mechanism of action of drugs used in therapy.

Course objectives

1 To learn drugs and its involved detoxification through phase 1 & 2 reactions2 To teach drug mechanism like passive and active phases

3 To learn the drugs manufacture biotechnological pharmaceutical industry

4 To understand the importance of drugs in treating various metabolic disorders5 To teach various applications of drugs in various fields.

Course out Comes (five outcomes for each units should be mentioned)

- 1. After studied unit-1, the student will be able to know about basic knowledge of drugs of phase I & II
- 2. After studied unit-2, the student will be able to understand drug mechanism and its adverse effects.
- 3. After studied unit-3, the student will be able to understand biotechnology in drug development, especiallyfor AIDS
- 4. After studied unit-4, the student will be able to know drugs and its importance various treatment likediabetes, cancer, lipidemia and infertility
- 5. After studied unit-5, the student will be able to know various application of drug dependence and abuse-management

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

UNIT I	Drug- structural feature and pharmacology activity, pro drug concept	.10 hours
	Absorption – first – pass effect .distributor , metabolism- phase I, I	Ι
	reactions, action of cyto chrome p450 &elimination of drug receptor	-
	localization, type and subtypes, models and their drug- recepto	r
	interaction, against &	
	antagonist.	
UNIT-II	Adverse response to drugs, drug tolerance, drug intolerance,	08 hours
	Idio SYNERACY (pharmacogenesis), drug allergy.	
	Tachyphylaxis, drug abuse, vaccination against infection	
JNIT – III	Biotechnology and pharmacy: genetically engineered protein and	
	peptide agents. novel drug delivery systems - nonconventional route	
	of administration. Anti AIDS drug development, oncogenes targe	t
	for drugs, multi- drugs	
	resistance.	00.1
UNIT – IV	Mechanism of action of drugs used in therapy of :respiratory system cough, bronchial- asthma, pulmonary tuberculosis .GIT	-08 hours
	– digestents, appetite suppressants. hypolipidemia agents,, vomiting	-
	constipation and peptic ulcer. antimicrobial drugs- sulfonamid	
	s,trimethoprim, cotrimoxazole, penicillin and macrolides . amin	
	glycosides, cephalosporin and bacterial resistance .Insulin and ora	1
	diabetic drugs, anti fertility and ovulation inducing drugs.	
JNIT-V	Drugs of plant origin: drug dependence and abuse- management o	f08 hours
	self poisoning cancer. Chemotherapy- cytotoxic drug. immune	
	suppressive drug therapy. New biological targets for	
	drug development. Novel drug screening strategies.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours	50 hours

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Book:

1. The pharmacology Vol I and Vol II– Goodman and Gillman, Mc Graw Hillprofessional;12 ed (2010)

2. Basic pharmacology – Foxter cox bulter worth"s1980.

3. Pharmacology and pharmaco therapeutics – R.S.Satoskar.

S.D.Bhandhhakar&S.S.Anilapure popular

PrakasharBombay.

Reference

- a. Principles of medical chemistry William O. Foge. B.I. Waverks Pvt Ltd, NewDelhi.
- b. Oxford text books of clinical pharmacology and drug therapy.D.G.Burger"s Medicalchemistry & drugdiscovery.
- c. Principles and practice Manfred. E. Wolf John Wiley and sons.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome\ S-Strong,\ M-Medium,\ L-Low$

Practical 1 : Lab In Biochemistry, Cell & Molecular Biology and Microbiology

- 1. Determination of Chl.a, Chl.b & total Chl. By Arnon method.
- 2. Estimation of Carbohydrates
- 3. Estimation of salivary amylase activity in relation to, substrate/pH/Temperature
- 4. Estimation of blood glucose &urea
- 5. Estimation of LDH.
- 6. Estimation of total serum proteins
- 7. Estimation of creatinine in urine.
- 8. Paper / thin layer chromatography

Cell and Molecular biology

- 9. Isolation of Genomic DNA from E.coli
- 10. Isolation of plasmid DNA from E.coli
- 12. Elution & quantification of DNA from agarose gel.
- 13. Preparation of competent cells and transformation
- 14. PCR
- 15. Isolation of Total RNA from bacteria
- 16. Synthesis of cDNA by Reverse transcription polymerase chain reaction

Microbiology

- 1. Sterilization techniques
- 2. Preparation of culture media(Selective and Enriched media)
- 3. Staining techniques- Simple, Differential, Negative staining and Motility studies
- 4. Determination of Bacterial growth curve
- 5. Enumeration of bacteria from environmental samples- soil, water, air and milk.
- 6. Pure culture techniques Streak, pour plate and spread plate.
- 7. Biochemical tests for identification of bacteria (IMViC, TSI, Catalase, Oxidase)
- 8. Antimicrobial assay, phenol coefficient, agar plate sensitivity method.
- 9. Water quality analysis MPN method.
- 10. Milk quality analysis MBRT method

Reference

1. Introduction to Practical Biochemistry, E.F Plummer Mu, PlummerTata McGraw-HillEducation,1998.

2. Molecular cloning: a laboratorygmanual,4th ed. J.Sambrook, Fritsch and

T.Maniatis.coldspring harbor laboratory press ,NewYork,2012

3. Essential cell biology : a practical approach volume 1: cellstructure. John Davey, J. Michaellord. Oxford university press, USA, 2003

4. Principles and techniques of biochemistry and molecular biology (7th

ed).keithWilson(editor),john walker (editor),Cambridge universitypress,2010.

- 6. Microbiology- A Laboratory manual P. Gunasekaran . New age publications, Newdelhi, 1995.
- 7. Molecular cloning-A Laboratory manual. Sambrook, J , Fritsch. E.F, and T.Maniatis, 2nd Edition. Cold spring Harbor Laboratory press, New York,1989.
- 8. Laboratory exercise of Microbiology, J.P. Harley and L.M. Prescott, 5th Edition, theMcGraw-Hill companies,2002.
- 9. Microbiology: A Laboratory Manual, J.G. Cappuccino and N. Sherman, Addison-Wesley, 2002.
- Laboratory Manual of Experimental Microbiology ,R.M.Atlas, A.E.Brown and L.C.Parks, 1995. Mosby,St.Louis,2002.
- 11. Laboratory manual in General Microbiology, N.Kannan, Panimapublishers.
- 12. Bergey"s Manual of Determinative Bacteriology. Ninth Edition J.G.Holt, N.R.Krieg.,Lippincott Williams, Wilkin publishers, 2000.

Semester: II

SEMESTER II PAPER 4: IMMUNOLOGY

Hours of teaching: 5

Aim: to provide the students insights into the various aspects of immunology such as classical

immunology, clinicalimmunology, immunotherapy and diagnostic immunology.

Course objectives :

- 1. To Learn the basic components and principles of defense mechanism against infections
- 2. To Understand the properties antigens and structure and types of Immunoglobulin
- 3. To understand principle behind Antigens- Antibody reactions.
- 4. To Expedite how the immune system recognizes foreign antigen and the significance of self/non-self-discrimination
- 5. To Enrich the students' knowledge with respect to different applications of Immunotechnology

Course Out Comes (five outcomes for each units should be mentioned)

- 1. After studied unit-1, the student will be able to know about basics of Immunity and various components ofImmune system
- 2. After studied unit-2, the student will be able to understand about Antigens and structural properties ofImmunoglobulin
- 3. After studied unit-3, the student will be able to understand principle of antigen-antibody reaction and their types
- 4. After studied unit-4, the student will be able to how immune cells are signaled, processed and destroyed
- 5. After studied unit-5, the student will be able to know various immunological technologies.

Credits: 4

Unit i. Remembering ii. iii. Applying iv. Analyzing v. Evaluating vi. Creating								
i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating			
	Understanding							
Yes	Yes	Yes	Yes	Yes	Yes			
Yes	Yes	Yes	Yes	Yes	No			
Yes	Yes	Yes	Yes	Yes	Yes			
Yes	Yes	Yes	Yes	No	No			
Yes	Yes	Yes	No	Yes	Yes			
	i. Remembering Yes Yes Yes Yes	i. Remembering ii. Understanding Yes Yes Yes Yes Yes Yes Yes Yes	i. Rememberingii.iii. ApplyingUnderstandingUnderstandingYesYesYesYesYesYesYesYesYesYesYesYesYesYesYesYes	i. Remembering ii.iii. Applying iv. AnalyzingUnderstandingUnderstandingYes	i. Remembering ii. Understandingiii. Applyingiv. Analyzingv. EvaluatingYesNo			

UNIT I	Introduction to the study of Immunology: Historic perspective, Overview and Concepts, Humoral and cellular- Mediated Immunoresponses. Components of immunity, Innate and Adaptive immunity. Haematopoiesis and differentiation of immune cells. Cells and Tissues of the immune system: Cells involved in the Immune response: Macrophages, B and T lymphocytes, Dendritic cells, Natural killer and Lymphokine activated killer cells, Eosinophils, Neutrophils and Mast cells. The lymphoid organs: Thymus, Bone marrow, Spleen, lymph	
UNIT-II	nodes, MALT. Antigens and Immunogenicity. Nature of Antigens and antibodies. Theories of Antibody formation. Antibody structure, structural basis of Antibody diversity; Immunoglobulin as Anitgen, Properties of immunoglobulin and subtypes. Complement and its role in Immune Responses.	
UNIT – III	Antigen - Antibody Reaction, Strength of Antigen and Antibody reaction, Cross reactivity, Precipitation and Agglutination reactions, Radioimmunoassay and ELISA. B-cell generation, activation and differentiation. Antibody production, Regulation and Diversity.	
UNIT – IV	Cytokines: structure of Cytokines; function of Cytokines. Complement fixation. Structure and function of MHC class I and II molecules - antigen recognition and presentation, HLA typing, Cellular Immunity. Hypersensitivity Reactions, Types of Hypersensitivity, Immune tolerance, Autoimmunity and transplantation.	
UNIT-V	Hybridoma secreting monoclonal antibodies-Recombinant antibody molecules. Catalytic Antibodies. Vaccine technology including DNA vaccines. Immunological techniques for identification of infectious diseases : immune-electrophoresis, western blot, flowcytometry and immune-fluorescence microscopy including <i>in situ</i> localization techniques such as FISH and GISH.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	65 hours
L	44	

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text Book(s)

- 1. Parham, P. (2014). The Immune System (4th edition). W. W. Norton & Company.
- 2. Murphy, K., Travers, P., Walport, M., &Janeway, C. (2012).Janeway'sImmunobiology. New York: Garland Science.
 - 3. Paul, W. E. (1993). Fundamental Immunology. New York: Raven Press. Goding, J. W. (1986). Monoclonal Antibodies: Principles and Practice
- 4. C.V.Rao. 2002, An Introduction to Immunology, Narosa Publishing House, Chennai.

References Books

- 1. Immunology (7th ed) J.Kuby ,W.H freeman and company , newYork.2013
- 2. Basic immunology updates ed: functions and disorders of immune system (3rd ed). abulk.abbas, Andrew H.HLictman ,saunders publishers , newYork,2010
- 3. Immunology: an introduction (4th) I.R Tizard, saunders college publishers, newYork.
- 4. Essential immunology (11th ed).peterdelves,seamusmartin,dennjis burton, Ivan Roitt, Wiley Blackwell publication, Singapore,2006
- 5. Immunology (Lippincotts illustrated reviews series) thaodoan, roger melvold, susanviselli, Carl Waltenbaugh, Lippincott Williams & Wilkins publications2012
- 6. Fundamental immunology (7th ed) William e Paul, Lippincott Williams & Wilkins publications,2012
- 7. Essentials of clinical immunology (6th ed) Helen chapel ,Manselhaeney, Siraj misbah, Neil snowden,Wiley-Blackwell publications,2014
- 8. Monoclonal antibodies principles and practice(3rd ed) W.Goodings, academic press,2010
- 9. Monoclonal antibodies :P methods and protocols (2nd ed) .Vincentossipo, Nicolas fisher, Humanapress,2014
- Essentials of clinical immunology (6th ed).Helen chapel, Manselhaeney, ,Siraj misbah, Neil Snowden,Wiley- Blackwell publications,2014 J.Kuby, 2003, Immunology 5th edition, W.H. Freeman and Company, Newyork..
- 12. I.R.Tizard, 1995, Immunology: An Introduction , 4th edition , Saunders College Publishers, NewYork.
- 13. I.Roitt, 1994, Essential Immunology, Blackwell Science, Singapore.
- 14. A. Bul and K.Abbas, 1994, Cellular and Molecularimmunology
- 15. Current Protocols in Immunology 3 Volumes, Wiley Publications1994.
- 16. Monoclonal Antibodies: Principles and Practice, J. W. Goding, 1983. AcademicPress
- 17. Hybridoma Technology in the Biosciences and medicine, T.A. Springer, 1985. Plenum PressNY

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1. <u>https://nptel.ac.in/courses/102/105/102105083/</u>
- 2. <u>https://www.coursera.org/specializations/immunolog</u>

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S		S

 $PO-Programme\ Outcome,\ CO-Course\ outcome\ S-Strong\ ,\ M-Medium,\ L-Low$

PAPER 5: GENETIC ENGINEERING

Subject: Genetic Engineering Hours/Week: 5

Credits: 4

Aim: To modify the genes to enhance the capabilities of the organisms beyond what is normal. Ethical controversy surrounds the possible use of both of these technologies in plants, nonhuman animals, and humans.

Course Objectives

- 1. To understand the basis of Enzyme, Ligases in Genetic Engineering Tools.
- 2. To well understood the Cloning Vectors.
- 3. To obtain knowledge about Gene cloning strategies and transformation techniques.
- 4. To obtain the knowledge of Selection, Screening, and analysis of recombinants.
- 5. To know the basic Genetic Engineering Techniques- Application of rDNA technology.

Course Out Comes

On completion of the course, the students will be able to:

1. After studying unit 1 the students will be able to identify the tools which are used in Genetic Engineeringand exhibit them their practical's.

2. After studying unit 2 the students will be able to differentiate methods in Cloning Vector.

3. After studying unit 3 the students will be able to describe the Techniques in Gene cloning – Physical, chemical and methods.

4. After studying unit 4 the students will be able to explain techniques amo recombinants likePCR, DNA sequencing, etc

5. After studying unit 5 the students will be able to analyze and can cross-examine the Genetic Engineering patients who visit the Lab.

	8		11 1	,		
Units	i.	ii.	iii.	iv.	v.	vi.
	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	Yes
4	Yes	Yes	No	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	No

The Matching Table (Put Yes / No in the appropriate box)

Units	Course Contents	Teaching Hours
Unit-I	Tools of Genetic Engineering: Enzymes - endo &exo nucleases, Restriction endonucleases- types, nomenclature, recognition sequences and mechanism of action; Isochizomers, Iso customers - star activity, Methylation, and modification. Ligases – types (NAD and ATP dependent), mechanism of action. Role of Kinases, phosphatases, polynucleotide phosphorylase, polynucleotide kinases, terminal transferase, Alkaline phosphatase, Reverse transcriptase - Taq polymerase.	12 hours
Unit-II	Cloning vectors: General characteristics of vectors, Brief account of naturally occurring plasmids. The promoter, MCS, Ori, and Marker genes-lac Z. Construction of pBR 322, pBR325, pBR327, pUC8, pUC 18 & 19 vectors, and Expression vectors, Bacteriophage vectors, Lambda phage, Insertion vectors, Replacement vectors, Cosmids, Phagemids, Mini chromosomes, BAC"s, YAC"s, Shuttle vectors, Ti plasmids, Vectors for animals- SV40 and Bovine papillomavirus.	12 hours
Unit-III	Gene cloning strategies and transformation techniques: Chimeric DNA, Cloning strategies- ligation, Transformation and selection, use of adaptors and linkers, Homopolymer tailing in cDNA cloning, genomic DNA libraries, Short gun method, Partial digestion, End modification, Cloning from mRNA- Isolation and purification of RNA, Synthesis of cDNA, Isolation of plasmids, Cloning cDNA in plasmid vectors, Cloning cDNA in bacteriophage vectors. cDNAlibrary. Advanced cloning strategies- synthesis and Cloning of cDNA, PCR amplified DNA. Transformation techniques: Preparation of competent cells, Physical methods - Electroporation, Microinjection, Gene gun, chemical methods - PEG, DEAE, CaCl ₂ , calcium phosphate precipitation method, liposome-mediated method	12 hours

Unit-IV	Selection, screening, and analysis of recombinants: Genetic	12 hours
	selection	
	- Insertional inactivation, Antibiotic Resistant genes, lac Z genes,	
	Blue white screening, α - Complementation, colony hybridization,	
	Immunological screening, Plaque hybridization, Blotting	
	techniques, DNA sequencing - chemical and enzymatic methods,	
	PCR and its variants, Preparation of radio labelled and non -	
	radiolabelled probes and its applications.	
Unit-V	Applications of rDNA technology: Production of vaccines -	12 hours
	Hepatitis B, Edible Vaccine, Hormones – Somatotropin, Humulin,	
	Blood clotting factor VIII, Interferons, Diagnostics of inherited	
	disorders	
	and infectious diseases, Gene therapy, ADA- Cystic fibrosis.	
Unit-VI	Internal Assessments, Seminars, and Guest Lecture	05 hours
	Total Teaching hours	65

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Textbook:

- 1. Concepts of Genetics (Masteringgenetics) 12th Editionby <u>William Klug</u> (Author), <u>Michael Cummings</u> (Author), <u>Charlotte Spencer</u> (Author), <u>Michael Palladino</u> (Author), <u>Darrell</u> <u>Killian</u> (Author)
- 2. Genetics: A Conceptual Approach Sixth Edition by <u>Benjamin A. Pierce</u> (Author) W. H. Freeman; Sixth edition (December 19, 2016)
- 3. Genetics: From Genes to Genomes, 5th edition 5th Editionby Leland H. Hartwell (Author), <u>Michael L. Goldberg</u> (Author), Janice A. Fischer (Author), Leroy Hood (Author), Charles F. <u>Aquadro</u> (Author)McGraw-Hill Education; 5th edition (September 5, 2014)
- Genetics: Analysis of Genes and Genomes: Analysis of Genes and Genomes 9th Editionby <u>Daniel L. Hartl</u> (Author), <u>Bruce Cochrane</u> (Author) Jones & Bartlett Learning; 9th edition (December 14, 2017)
- 5. Principles of Genetics 6th Edition by <u>D. Peter Snustad</u> (Author), <u>Michael J. Simmons</u> (Author) John Wiley and Sons; 6th edition (August 23, 2011)
- 6. An Introduction to Genetic Engineering 3rd Edition, author : Desmonds S.T. Nicholl, University of Paisley May 2008.
- 7. Gene Cloning and DNA Analysis: An Introduction 7th Editionby <u>T. A. Brown</u> Wiley-Blackwell; 7th edition(January 19, 2016)
- Biotechnology: Applying the Genetic Revolution 1st Editionby <u>David P. Clark BA</u> (honors)Christ's College <u>Cambridge 1973
PhD University of Brsitol (England) 1977</u> (Author), <u>Nanette Pazdernik</u> Academic Cell;1st edition (September 19, 2008) **Reference Book:**
- 1. An Introduction to Genetic Engineering (Studies in Biology) 2nd Editionby Desmond S. T. Nicholl
- 2. Genetically Engineered Foods (Volume 6) (Handbook of Food Bioengineering, Volume 6) 1st Editionby <u>Alexandru Mihai Grumezescu</u> (Editor), <u>Alina Maria Holban</u> (Editor) 2017.
- 3. Genetically Engineered Foods Hardcover January 1, 2021 by Armando Mills (Author) ED-

Tech Press; 1stedition

4. Genetic Engineering: A Christian Perspective Paperback – December 27, 2019 by <u>Michael</u> Scaife.

Course Material:

Website links: https://www.genome.gov/genetics-glossary/Genetic-Engineering

https://www.amazon.in/s?k=genetic+engineering+book&hvadid=82669701180826&hvbmt=b p&hvdev=c&hvq mt=p&tag=msndeskstdin-21&ref=pd_sl_3hztgcyjhj_p

E-journals: Process Biochemistry (Elsevier), Journal of Cellular Biochemistry (Wiley)

_											
	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	S	S	Μ	М	Μ	М	М	S	S	S
	CO2	Μ	M	M	S	S	М	S	S	М	М
	CO3	Μ	M	M	S	S	S	S	Μ	М	М
	CO4	S	S	S	М	М	М	S	М	М	S
	CO5	Μ	M	М	S	S	S	М	М	S	S

Mapping with Programme Outcomes

PO - Programme Outcome, CO - Course outcome S - Strong, M - Medium, L - Low

PAPER 6: DEVELOPMENTAL BIOLOGY AND STEM CELL BIOLOGY

Subject: Developmental Biology and Stem Cell Biology Hours/Week: 5

Credits: 4

Aim: To understand the recent advances and its applications to modern biotechnology

Course objectives:

- 1. To study the basics of sperm, egg cell cycle and its various stages
- 2. To teach the developmental concepts of drosophila and chick
- 3. To teach the concepts of stem cell, embryonic and adult stem cell
- 4. To study the types of stem cell and stem cell mediated antigen role different stem cell
- 5. To understand the recent advances and its applications to modern biotechnology.

Course outcomes

- 1. After studied unit-1, the student will be able to know about basic knowledge of Developmental Biology
- 2. After studied unit-2, the student will be able to understand mechanism of developmental morphogenesis and organogenesis
- 3. After studied unit-3, the student will be able to understand the stem cell and its importance
- 4. After studied unit-4, the student will be able to know the different types of stem cell
- 5. After studied unit-5, the student will be able to know various application of stem cell in medicine.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

Units	Course Contents	Teaching Hours
	Introduction to Developmental Biology: Cells and morphogens gradients. Ultrastructure of sperm, egg, pollen and ovule. Production of gametes in animal and plant (Spermatogenesis, Oogenesis). Cell surface molecules in sperm - egg recognition in animals; zygote formation, cleavage, blastula formation, gastrulation and formation of germ layers in animals.	12 hours
	Developmental Concepts: Morphogenesis and organogenesis in animals (Drosophila and Chick). Cell fate and cell lineages; genomic equivalence and the cytoplasmic determinants; imprinting. Role of in development. Cellular differentiation and Differential activation. Role of cell death in development. Terato genesis - Ageing, transgenic.	12 hours
	Introduction to stem cell biology: Introduction to concepts in stem cell biology (renewal and potency)introduction to stem cells, Germ line stem cells and germ line derived pluripotent cell, Epigenetics, nuclear transfer and cloning, introduction to cell, tissues and organ. Introduction to embryonic and adult stem cell.	12 hours
	Basic and Types of Stem cell: Stem cell basic: Reprogramming and induced pluripotent cells (iPS cells), chromatin and stem cells, telomeres and stem cells, stem cell differentiation and characterization : CD antigens and its role in stem cell differentiation. Neuronal stem cell, mesenchymal stem cell, cardiac stem cells, hematopoietic stem cells	12 hours
Unit-V	Technique and Application Techniques used for stem cell isolation, enumeration and <i>in vivo</i> expansion, techniques used for stem cell characterization. Therapeutic applications of stem cell: fundamentals of regenerative medicine, autologous and allogenic stem cell transplantation, HLA typing, Stem cell banking – cryopreservation techniques, national and international guideline, recent advances in stem cell biology.	12 hours

	Total Teaching hours								
Internal Assessment Methods: (25 marks)									
Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks					
internals	II + CIA III)								
Marks	15	05	05	25					

Text Books

- 1. Essentials of stem cell biology 2009, (second ed)Robert Lanza, John Gearhart, Brigid Hogan, Douglass Melton, roger Pedersen, E. Donnall Thomas, James Thomson and sir Ian Wilmutt.
- 2. Ann a. Kiessling, human embryonic stem cells: an introduction to the science and therapeuticpotential, Jones andbartett,2003
- 3. Peter J ,Quesenberry, stem cell biology and gene therapy, 1st ed, willyless,1998
 4. Developmental biology, (2018), 11th edition by Michael J. F. Barresi, Scott F. Gilbert.Reference Books
- 1. Human Embryology & Developmental Biology (2019), 6th edition by Bruce M. Carlson
- 2. Principles of Development (2019), 6th edition by Cheryll Tickle; Lewis Wolpert; Alfonso Martinez Arias.
- 3. Freshney RI. 2016. Culture of animal cells: A manual of basic technique and Specialized Applications. 7th Edn. Wiley- Blackwell.. United States of America.
- 4. Singh, B., Mal, G., Gautam, S.K., Mukesh, M.2019 Advances in animal biotechnology 1st EdnSpringer International Publishing. Switzerland

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

https://www.youtube.com/watch?v=dXknfffXeDM

https://courseware.cutm.ac.in/courses/biochemistry-and-enzyme-technology/ https://freevideolectures.com/course/85/enzyme-science-and-engineering E-Journals: Reproductive Biology, Stem cell biology, Fertility and Sterility, Urology

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S		S

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-Strong, M-Medium, L-Low

ELECTIVE IV : (A) MEDICAL LABORATORY TECHNOLOGY

Subject: Medical Laboratory TechnologyHours/Week: 4

Credits: 2

Aim: To enable the students to learn about the General laboratory and instrumentation. Know the significance of biological samples examination & understand the various types of infection and clinical symptoms caused by microorganisms.

Course Objectives

- 1. To teach the physical and chemical nature of Body fluids
- 2. To teach the safety measures in diagnostic laboratory
- 3. To learn knowledge about laboratory techniques
- 4. To learn hematology and pathology laboratory techniques
- 5. To teach advanced methods in collection and storage, preparation, analysis of body fluids, and results.

Course outcomes:

- 1. After studied unit 1 the students will be able to follow safety precautions in the diagnostic laboratory.
- 2. After studied unit 2 the students will be able to general laboratory and instrumentation.

3. After studied unit 3 the students will be able to know the significance of biological samples and their importance in the examination

4. After studied unit 4 the students will be able to understand the various types of infection and clinical symptomscaused by microorganisms.

5. After studied unit 5 the students will be able to analyze and can cross-examine the Haematology tests of patients who visit the hospital.

Matching Table (Put Yes / No in the appropriate box)

Unit	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	No	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

		eaching
Units	Course Contents	hours
Unit I	General Laboratory and instrumentation: Code of conduct for laboratory personnel-safety measures the laboratory-chemical/Reagents, labeling, storage, and usage. First aid in laboratory accidents-Precautions and first aid equipment. Sterilization, and preparation of reagents. The general approach to quality control, quality control of quantitative data	
Unit-II	Clinical pathology: Urine analysis: Collection, composition, preservation, gross examination, chemical examination. Significance of sugar in the urine, ketone bodies, bile pigment, hematuria, uric acid, microscopic examination of the urinary sediment: stool Examination-specimen collection, pH, Interfering substance. Test for occult blood, fecal fat, and microscopic examination of a stool specimen.	
Unit-III	Clinical Hematology: Collection of blood-Anticoagulant, preservation Estimation of Hb, PCV, WBC (TC & DC), RBC, platelets, ESR Clotting time, bleeding time-normal value, clinical interpretation Serology-VDRL, CRP, RA, HIV, HBs Ag.	
Unit-IV	Histology: Basic concepts of different mammalian tissues and their histological structure. Different human organs and their gross and histological structure and functions. Receiving of biopsy specimens at the laboratory (Clinical notes/fixatives). Fixation of tissue –different fixatives and their mode of action.Methods of decalcification.Use of microtomes, selection, and maintenance of knives, the technique of section cutting &mounting on slides. Staining of tissue sections, preparation of different stains, staining methods for Haematoxylin& Eosin.	5 hours
Unit-V	Blood banking: blood group(ABO & Rh)-methods of grouping & reverse grouping. Basic blood banking procedures- a collection of blood, anticoagulants used, cross-matching, different screening, Tests including Coomb"s Test for incomplete antibodies preparation of different blood components for use and how to serve a requisition. preparation of red cell suspension. Blood transfusion & hazards. Detect the time when to discard blood in the blood bank, computerized record.	
Unit-VI	Internal Assessments, Seminars, and Guest lecture	05 hours
	Total Teaching hours	30

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Textbook:

- 11. Medical
- 12. Hand book medical laboratory technology 2nd edition-V.H.Talib CBS publishers& 2008.
- 13. Clinical laboratory practices in CMC procedure, CMC, Vellore
- 14. Text book of Medical lab technology, 1st Edition-Ranmniksood.jaypee2006.
- 15. Laboratory manual in biochemistry-Jayaraman New Age International Pvt Ltd publishers2011.

Reference Book:

- 1. Kanai L. Mukherjee and Anuradha Chakravarthy, Medical Laboratory Technology, Procedure Manual for RoutineDiagnostic Tests, Vols. I, II and III. Tata McGraw Hill Publishing Company Ltd., 2017.
- 2. Ramnik Sood, Concise Book of Medical Laboratory Technology Methods and Interpretations. Jaypee BrothersMedical Publishers (P) Ltd., New Delhi, 2015.
- 3. N. Pattabiraman. Laboratory Manual in Biochemistry, 4th Edition. All India Publishers & Distributors, 2015.
- 4. Namita Jaggi. Microbiology Theory for MLT. 2nd Edition. Jaypee Brothers Medical Publishers (P) Ltd., 2013.
- 5. Alan H. Lowenclock. Varley's Practical Clinical Biochemistry, 6th Edition. CBS Publishers and Distributors, 1988.

Course Material:

Website links:<u>https://library.fvtc.edu/MLT/Links</u>, <u>https://libguides.gvsu.edu/MLS/websites</u>,E-Books: <u>https://www.pdfdrive.com/medical-laboratory-technician-e23958474.html</u>, E-journals : <u>https://onlinelibrary.wiley.com/journal/10982825</u>,

https://academicjournals.org/journal/JMLD.Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	S	S	М	М	М	S	М	S	S
CO2	М	S	М	М	М	S	S	S	М	М
CO3	S	М	М	S	S	М	М	S	М	S
CO4	М	S	S	М	М	S	М	М	S	S
CO5	S	М	S	М	S	М	S	М	S	S

PO - Programme Outcome, CO - Course outcome, S - Strong, M - Medium, L - Low

ELECTIVE IV (B): FOOD & NUTRITION

Name of the Paper: Food and Nutrition Total Hours/Week: 4

Credits: 2

Aim: To enable students to gain a deeper understanding about principles of nutrition and also to develop competence to carry out investigation in nutrition

Course Objectives

- 1. To enable the students to learn the basic concepts of nutrition and different categories offoods.
- 2. To enable the students to gain knowledge of different nutrient contents and their importance.
- 3. To make them learn the basics of nutritive and calorific value.
- 4. To enable the students to know food adulterants and food poisoning, disadvantages &health problems.
- 5. To enable the students learn the food spoilage and preservation methods.

Course Out Comes

- 1. The student will be able to differentiate the foods types and their nutritive value.
- 2. The student will be able to develop competence to carry out investigation in nutrition
- 3. The student will be able to measure and calculate calorific value of different types of foods
- 4. The student will be able to identify the food adulterants and food poisoning
- 5. The student will be able to practice food sterilization, preservation and processing.

Unit	i Domomboring	ii Understanding	iii Applying	in Analyzing	y Evoluting	vi Creating
UIIIt	i. Remembering	ii. Understanding	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Definition and basis of food and nutrition, Different Food groups and classification, Nutritional significance and physiological role of food groups, Protein Energy Malnutrition (PEM), definition and types, Treatment and preventive measures of PEM.	-
UNIT-II	Introduction to Vitamins., Fat soluble vitamins, Water soluble vitamins	5 hours
UNIT – III	Introduction to calorific value and nutritive value, Bomb calorimeter, Measurement of calorific value and nutritive of foods RQ value, BMR and SDA of food stuffs, their measurements and influencing factors, Nutritive value of proteins and amino acids Balanced diet, composition of balanced diet for pregnant woman infants, old age.	, ,
UNIT – IV	Definitions of food adulterations and food poisoning, Sources of foods and types of adulterants, advantages and disadvantages of adulteration, Constituents of foods, carbohydrates, proteins, fats,oils Flavours, colours and natural toxicants, Sources causes and remedies for acidity, gastritis, indigestion and constipation.	2
UNIT-V	Introduction to food spoilage, food preservation and food processing, Causes and types of food spoilage, types of food preservation and food processing, Food sterilization and pasteurization.	l
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lectures	05 hours
	Total Lecture hours	30

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text book:

- 1. Albanese, Anthony A Ed, Protein And Amino Acid Nutrition Academic Press New York 1959.
- 2. Devlin T.M., Biochemistry by Stryer Text book of Biochemistry with clinical correlations.
- 3. Lehninger, Principles of Biochemistry, by 4th Ed. By Nelson D.L. and Cox. M.M. 6
 4. Murray R.K., Grammer, D.K., Mayer P.A., Rodwell V.W., Harpers Biochemistry, a lange medical book 26thEd. Mc. Graw Hill, Health Professions Division.
- 5. West. E.S., Todal, W.R., Mason H.S. and Van Brygen J.T., Text Book of Biochemistry.
- 6. Mayer, J., Human Nutrition, Charles, C. Thomas, spring field.
- 7. Michael, J. Gibney, Barrie, M. Margetis, John, M. Kearney. Lenore Arab. Public Health Nutrition. Blackwellscience, Blackwell Publishing Company (2004).
- 8. Frazier, We, Food Microbiology, Tata Mc Graw₄Hill 1978.

9. Meyer, Lilian H. Ed. (1987), Food chemistry. Indian Ed. CBS Publishers and Distributors

10. Barker, D.J. P (1998), Mothers, Babies and Health in later life. Edinburgh, Churchill livingstone.

11. Ward, R.H.T; Smith, S.K. Donnai, D. (Eds.) (1994) Early fetal Growth and Development. London, & COG Press.

12.. Wallace, H.M. and Giri, K. (1990), Health care of women and children indeveloping countries, third party publishing co.Oakland.

```
Reference Book:
```

- 1. Seema yadav: Food Chemistry, anmol publishing (P) Ltd, NewDelhi
- 2. Car H.Synder: -the extraordinary chemistry for ordinary things, John Wiley & sonsinc, NewYork, 1992.
- 3. B.Sivasankar food processing and preservation PHI learni9ng (P) LTD, New Delhi 11001.

Course Material: website links, e-Books and e-journals 1. <u>https://chico-primo.hosted.exlibrisgroup.com</u>

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	M	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong\ ,\ M-Medium,\ L-Low$

ELECTIVE IV (C) : BIODIVERSITY

Name of the Paper: Biodiversity Total Hours/Week: 4

Credits: 2

Objectives: To enable students to gain a deeper understanding about the every living thingsincluding plants, bacteria, animals and humans .and enormous variety of life on Earth.

Course Objectives

- 1. To learn the basic concepts of ecosystem and ecology
- 2. To teach various biodiversity across the country and globe face.
- 3. To understand the History, guiding principles, conservation of ecology and biodiversity as per ICUN.
- 4. To learn the importance of pollution damages environmental through how it influence biodiversity
- 5. To teach and understand how water pollution affects environment and its remedies.

Course Out Comes

4.

- 1. After studied unit-1, the student will be able to understand the ecosystem and environment.
 - 2. After studied unit-2, the student will be able to understand various types of biodiversity.

3. After studied unit-3, the student will be able to Understand History, guiding principles, conservationchallenges and models of conservation biology.

- After studied unit-4, the student will be able to Gain knowledge of biosafety and risk assessment of Environmental Pollution.
- 5. After studied unit-5, the student will be able to Understand Water conservation, Rain water harvestingand disaster management of biodiversity.

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I		5 hours
	Ecosystem concept Introduction and overview of ecosystem ecology -	
	History of ecosystem ecology, Ecosystem structure and functioning,	,
	Ecosystem diversity and landscapes, Ecosystem resilience and change,	
	Trophic dynamics and temporal dynamics, Ecological efficiencies	
UNIT-II		5 hours
	Biodiversity and its origin, Global and local trends, Mega biodiversity	
	countries, hot spots and heritage sites, types of diversity, levels of	
	biodiversity (genetic, species, ecological diversities), value of	
	biodiversity.	
UNIT – III		5 hours
	History, guiding principles, conservation challenges and models of	
	conservation biology. IUCN Red list categories and criteria, habitat	
	management and establishment of wildlife corridors and protected areas,	
	bio-indicators. Biosphere reserves, in situ and ex situ conservations	
	(sanctuaries, national parks, zoological parks, botanical gardens,	,
	oceanorium).	
UNIT – IV		5 hours
	Environmental Pollution- Causes, effects and control measures of air	
	pollution, water pollution, soil pollution, noise pollution, thermal pollution and solid waste management. Environment Protection Act: Air, water,	
	forest and wild life acts, issues involved in enforcement of environmental	
	legislation.	
UNIT-V		5 hours
01111-1	Water conservation, Rain water harvesting & watershed management, and	5 110015
	environmental ethics. Climate change, global warming, acid, rain, ozone	
	layer depletion. Environmental protection act, population explosion.	
	Disaster management.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lectures	5 hours
	Total Leature hours 50 hours	20 h au 12
	Total Lecture hours 50 hours	30 hours
Internal As	sessment Methods: (25 marks)	•

Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks						
internals	II + CIA III)		_							
Marks	15	05	05	25						

Textbooks

- 1. Alcock J 2013 Animal Behavior: An Evolutionary Approach, 10th edition (SinauerAssociates,Inc.)
- 2. Bolhuis J J and L Giraldeau (eds) 2005 The behaviour of animals (BlackwellPub.)

3. Breed and Moore 2011 Animal Behavior, 1st Edition (Academic Press) 4. Burnse D

(ed.) 2001Animal: the definitive visual guide to worlds" wildlife (Cambridge UniversityPress)
4. Collen B, Pettorelli N, Baillie J E M and Durant S M (Eds) 2013 Biodiversity

Monitoring andConservation: Bridging the Gap Between Global Commitment and Local Action(WileyBlackwell)

5. GL. Karia and R.A. Christian, West Water Treatment, Concepts and Design Approach, PrenticeHall of India,2005.

6. Benny Joseph, Environmental Studies, Tata McGrawHill,2005

Reference book

1. Introduction to bioethics (2018), 2nd edition by J.A. Bryan

Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

1. https://swayam.gov.in/nd1_noc20_hs18/preview2. https://nptel.ac.in/courses/109/106/109106092/

3. https://onlinecourses.nptel.ac.in/noc20_hs18/preview4. https://nptel.ac.in/courses/102/104/102104068/

5. <u>https://www.futurelearn.com/courses/biosecurity</u>

PO2 PO3 PO4PO5 PO6 PO7 PO8PO9 PO10 COs PO1 S S S SM CO1 S Μ S S S S S S CO2 S Μ S S М S Μ S S S S S S S S S CO3 М S S S S S S S S CO4 Μ Μ S S S S S S S S CO5 S M

Mapping with Programme Outcomes

PO – Programme Outcome, CO – Course outcome S – Strong, M – Medium, L – Low

ELECTIVE V (A): GENOMICS & PROTEOMICS

Hours of teaching: 3

Credits:2

Aim: To enable us to explore many different components of living systems and the advent of proteomics will made itpossible to identify a broad spectrum of proteins in living systems. This elective subject will help to understand basic principles and applications in genomics and proteomics.

Course objectives:

- 1. To provide the basic knowledge of gene characteristic feature and mapping concepts
- 2. To understand about the sequencing technologies
- 3. To provide the basic concept for protein analysis
- 4. To understand about protein sequencing
- 5. To Enrich the students' knowledge with respect to metagenomic and applications

Course Out Comes (five outcomes for each units should be mentioned)

- 11. After studied unit-1, the student will be able to know about genes functional properties.
- 12. After studied unit-2, the student will be able to understand how gene sequencing are done
- 13. After studied unit-3, the student will be able to understand Protein analysis.
- 14. After studied unit-4, the student will be able to protein sequencing methods.
- 15. After studied unit-5, the student will be able to know about metagenomics and its application .

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	No	No
5	Yes	Yes	Yes	No	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Organization of genes across living systems, interrupted genes,	10 hours			
	overlapping genes, alternative genes, (RNA editing and RNA				
	Splicing) etc. identification and characterization of insert DNA				
	fragments, gene content and C value paradox – gene cluster and gene				
	families				
	restriction mapping, chromosome walking and chromosomal				
	localization of genes. RFLP and other uses of cloned sequences,				
	cloning of microbial genes.				

UNIT-II	Methods of preparing genomic DNA, DNA sequence analysis methods, Sanger Di deoxy method, next generation sequencing, SNP – single nucleotide polymorphism, expressed sequenced Tags(ESTs),Gene disease association, site directed mutagenesis and molecular chimeras, gungal genome and genomics.PCR based Analysis, DNA Fingerprinting.	08 hours
UNIT – III	Scope of proteomics, protein separation techniques – ion exchange chromatography, size – exclusion and affinity chromatography techniques, size – exclusion and affinity chromatography techniques , protein analysis (includes measurement of concentration , amino acid composition, N-terminal sequencing); SDS-PAGE , two dimensional gel electrophoresis and image analysis.	13 hours
UNIT – IV	Introduction to mass spectrometry; strategies for protein identification ; protein sequencing ; protein modifications and proteomics ; applications of proteome analysis to drug; protein – protein interaction (Two hybrid interaction screening), analysis and sequencing individual spots by mass spectrometry (Maldi toff) and protein microarrays .	08 hours
UNIT-V	a genomics – construction, vector design and screening o f meta genomic libraries- biotechnological applications of meta genomics.	08 hours
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours	50 hours

	(======================================			
Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks
internals	II + CIA III)			
Marks	15	05	05	25

Text Books

Introducing proteomics (2011) Josip lovric. John Wiley Publication
 Principles of proteomics (2013). R. M Twyman. Taylor and Francis publishers.

Reference Books

- 1. Expression Genetics: accelerated and High Throughput Methods (1999). Edited by M. McClelland and
 - A. Pardee, Eaton Publishing, MA.
- 2. Microbial Functional Genomics (2004). J. Zhou, D.K. Thomson, Y. Xu and J.M. Tiedje, Wiley Liss.

3. Reviews and articles from Journals such as Nature, Science, PNAS (USA), Nucleic Acids Research, Trends andCurrent Opinion Series.

- 4. Principles of Gene Manipulation and Genomics (2013) Sandy B. Primrose, Richard Twyman BlackwellPublishing.
- 5. An Introduction to Genetic Engineering 3rd Edition DesmondS. T. Nicholl Cambridge University Press

6. Molecular Biotechnology: Principles and Applications of Recombinant DNA 4th Edition Bernard R. Glick, Jack J.Pasternak, Cheryl L. Patten ASM Press

7. Post-translational modifications in host cells during bacterial infection, D. Ribert, P. Cossart, FEBS letters, 2010.

8. Proteomics in practice: a laboratory manual of proteome analysis (2002).Westermeier, R., & Naven, T. John Wiley& Sons, Inc.

- Proteomics for biological discovery. Veenstra, (2006). Timothy D. and John R. Yates John Wiley & Sons,
- 10. Plant proteomics: methods and protocols. (2007). Thiellement, H., Zivy, M., Damerval, C. and Méchin, V. eds. Totowa (NJ): Humana Press.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	Μ	S
CO2	S	S	М	S	S	S	S	М	S	Μ
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

Mapping with Programme Outcomes

 $PO-Programme\ Outcome,\ CO-Course\ outcome\ S-Strong,\ M-Medium,\ L-Low$

ELECTIVE V (B) : ENVIRONMENTAL SCIENCES

Total Hours per Week: 3

Course Objectives

- 1. To introduce students to the basics of Environment.
- 2. To enable the students learn basic structure and functions of ecosystem. $\frac{76}{76}$

Credits: 2

- 3. To make students understand the distribution of life and life forms on earth.
- 4. To make students aware of the different forms of energy in environment.
- 5. To make the students understand the different pollutants and pollution and their Management.

Course Out Comes (five outcomes for each units should be mentioned)

- 1. The student will be able to understand the principles and scope of environment.
- 2. The student will be able to understand the distribution and cycling of energy and matter in

Environment.

- 3. The student will be able to identify and characterize the earth sciences.
- 4. The student will be able explorate the sources of energy from environment.
- 5. The students will be able to apply methods to control and manage the environmentpollution.

Matching Table (Put Yes / No in the appropriate box)

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	No	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

JNIT-II JNIT – III	Structure and composition of atmosphere, hydrosphere, lithosphere, biosphere. Meteorological parameters. Environmental education and awareness. Environmental Ethics. Introduction to origin of life and speciation, Ecosystem structureand functions, food chains and webs, Basis of ecosystem classification, Biotransformation, water and air borne microbes, Bioremediation, Bioindicators, Biofertilizers, Biofuels, Biosensors. Introduction to origin of earth, components of earth, zones of earth, Climates of India, weather reactions, erosion, transport, deposition of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of ground water and mitigation of its impacts.	
	awareness. Environmental Ethics. Introduction to origin of life and speciation, Ecosystem structureand functions, food chains and webs, Basis of ecosystem classification, Biotransformation, water and air borne microbes, Bioremediation, Bioindicators, Biofertilizers, Biofuels, Biosensors. Introduction to origin of earth, components of earth, zones of earth, Climates of India, weather reactions, erosion, transport, deposition of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of	5 hours
	Introduction to origin of life and speciation, Ecosystem structureand functions, food chains and webs, Basis of ecosystem classification, Biotransformation, water and air borne microbes, Bioremediation, Bioindicators, Biofertilizers, Biofuels, Biosensors. Introduction to origin of earth, components of earth, zones of earth, Climates of India, weather reactions, erosion, transport, deposition of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of	
	functions, food chains and webs, Basis of ecosystem classification, Biotransformation, water and air borne microbes, Bioremediation, Bioindicators, Biofertilizers, Biofuels, Biosensors. Introduction to origin of earth, components of earth, zones of earth, Climates of India, weather reactions, erosion, transport, deposition of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of	
	functions, food chains and webs, Basis of ecosystem classification, Biotransformation, water and air borne microbes, Bioremediation, Bioindicators, Biofertilizers, Biofuels, Biosensors. Introduction to origin of earth, components of earth, zones of earth, Climates of India, weather reactions, erosion, transport, deposition of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of	
JNIT – III	classification, Biotransformation, water and air borne microbes, Bioremediation, Bioindicators, Biofertilizers, Biofuels, Biosensors. Introduction to origin of earth, components of earth, zones of earth, Climates of India, weather reactions, erosion, transport, deposition of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of	5 hours
JNIT – III	Bioremediation, Bioindicators, Biofertilizers, Biofuels, Biosensors. Introduction to origin of earth, components of earth, zones of earth, Climates of India, weather reactions, erosion, transport, deposition of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of	5 hours
JNIT – III	Introduction to origin of earth, components of earth, zones of earth, Climates of India, weather reactions, erosion, transport, deposition of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of	5 hours
JNIT – III	Climates of India, weather reactions, erosion, transport, deposition of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of	5 hours
	of sediments, Soil forming minerals and process, identification and characterization of clay minerals, Ground water quality, pollution of	
	characterization of clay minerals, Ground water quality, pollution of	
	ground water and mitigation of its impacts	
	ground water and mutgation of its impacts.	
JNIT – IV	Sources of energy, Sun as source of energy, Solar radiation and its	5 hours
	spectral characteristics, Characteristics and energy content of coal,	,
	petroleum, and natural gases, Energy usage pattern in world and	
	India, Pollutants, emissions of CO ₂ and Global warming.	
JNIT-V	Introduction to pollution, air, noise, water, soil, thermal, marine and	5 hours
	radioactive Pollution, Concept of Waste management, Solid and	
	hazardous waste management, Electrical energy generation, e-	
	waste, fly ash, plastic waste, Environmental management system	
	standards, IPCC, UNEP, IGBP, Global environmental issues-	
	Biodiversity loss, climate change, Ozone depletion, sea level rise.	
JNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours	30 hours

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text book:

- 1. Hardy, J.T. 2003. Climate Change: Causes, Effects and Solutions. John Wiley & Sons.
- 2. Harvey, D. 2000. Climate and Global Climate Change. Prentice Hall.
- **3.** Minkoff, E.C. 1983. Evolutionary Biology. Addison Wesley. Publishing Company.
- 4. Nei, M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press.
- **5.** Pepper, I.L., Gerba, C.P. & Brusseau, M.L. 2006. Environmental and Pollution Science. Elsevier Academic Press.

- 6. Purohit, S.S.& Ranjan, R. 2007. Ecology, Environment & Pollution. Agrobios Publications.
- 7. Owen, O.S, Chiras, D.D, & Reganold, J.P. 1998. Natural Resource Conservation Management for Sustainable Future (7th edition). Prentice Hall.
- **8.** Elliott, D. 1997. Sustainable Technology. Energy, Society and Environment (Chapter 3). New York, Routledge Press.
- **9.** Bagchi, A. 2004. Design of Landfills and Integrated Solid Waste Management. JohnWiley & Sons.
- 10. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Sounders.
- 11. Barry, R. G. 2003. Atmosphere, Weather and Climate. Routledge Press, UK.
 12. Mitra, A.P., Sharma, S., Bhattacharya, S., Garg, A., Devotta, S.&Sen, K. 2004. Climate Change and India.Universities Press, India.
 Reference Book:
- 1. Botkin, Daniel B. (2011). Environmental Science: Earth as a living Planet, John Wiley and Sons, New Delhi.
- 2. Chapman. J. L. and Reiss, M.J. (2005). Ecology, Principles ad Applictions, CambridgeUniversity Press, London.
- 3. Dash, M.C. (1994).Fundamentals of Ecology, Tata Mc Graw Hill, New Delhi.
- 4. Gunther, O. (1998) Environmental Information Systems. Berlin, New York, Springer.
- 5. Miller G. Taylor and Scot Spoolman. (2011). Essentials of Ecology, Books/ Cole Learning, sU.S.A.
- 6. Odum, E.P. (1971). Fundamentals of Ecology, W.B. Saunder Company, Philadelphia
- 7. Sharma P. D. (1996). Environmental Biology, Rastogi Publications, Meerut.
- 8. Verma P.S. and V.K. Agarwal. (1985). Principles of Ecology. S. Chand and Company(Pub.), New Delhi.
- 9. Strahler, A. V. and Strahler, A.A (1973). Environmental Geoscience, Wiley International.
- 10. PrimackR.B. 2014. Essentials of Conservation Biology, Oxford University Press, USA.
- Course Material: website links, e-Books and e-journals 1. <u>https://www.hzu.edu.in/bed/E%20V%20S.pdf</u>.
- 2. https://www.intechopen.com/books/1882.

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	M	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong\ ,\ M-Medium,\ L-Low$

ELECTIVE V (C) : Herbal Biotechnology

Hours/Week: 3

Aim: To give the details of plant-derived value-added compounds and their functions. To provide knowledge onbiotech-based production of Herbal medicines

Course Objectives

- 1. To enable the students to learn about the biochemical parameters used in the identification and utilization of medical plants
- 2. To enable the students to learn about the extraction of phytochemicals and procedures
- 3. To exploit and explore the medicinal values of plants
- 4. know the evaluation techniques for the herbal drugs
- 5. To provide knowledge on biotech-based production of Herbal medicines

Course Outcomes (five outcomes for each unit should be mentioned)

- 1. After studied unit-1, the student will be able to know the Study of on history and scope of herbals
- 2. After studied unit-2, the student will be able to understand the Important medicinal herbs in treating diseases
- 3. After studied unit-3, the student will be able to –learn the Biotechnological methods of plant propagation
- 4. After studied unit-4, the student will be able to –explore methods Involved in secondary metabolite production

5. After studied unit-5, the student will be able to –know about pharmaceutical applications and Intellectual PropertyRights

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
	_	Understanding			_	_
1	Yes	Yes	No	No	No	No
2	Yes	Yes	No	No	No	No
3	Yes	Yes	No	No	No	No
4	Yes	Yes	No	No	No	No
5	Yes	Yes	No	No	No	No

Matching Table (Put Yes / No in the appropriate box)

Credit:2

Units		Teachin					
	Course Contents	hours					
Jnit I	Study of on history and scope of herbals - Introduction to the Indian system of medicine – Herbal drugs and importance- Herbal Cosmetic and Cosmeceuticals	10 hours					
	- Formulation Development of herbal preparations - Herbal Drug						
Init-II	discovery andNovel drug delivery systems. Important medicinal herbs in treating diseases- Phytochemistry of	f08 hours					
1111-11	medicinal plants- alkaloids- flavones- flavonoids and xanthones						
	furocoumarins - glycosides - naphthoquinones - phenols and	-					
	acylphloroglucinols - resins,	u					
	oleoresins and gum resins. Saponins - sterols and steroid-like compound	le.					
	- tannins and terpenes.	15					
Jnit-III	Biotechnological methods of plant propagation Micropropagation	_13 hours					
	Somatic Embryogenesis and somoclonal variation. Herbal gardening and						
	maintenance- Standardization of cultivation protocols of selected						
	medicinal plants; <i>in vitro</i> production of secondary metabolites. Polyhouse						
	Technology- Important						
	diseases of medicinal plants and their management.						
Jnit-IV	Methods Involved in secondary metabolite production - Organ						
	culture, Cellculture, Biotransformation (Microbial and Plant cells) - Scale						
	up - Enhancement						
	of product formation by elicitation-Immunodiagnostics and						
	moleculardiagnostics in selection of elite plant species.						
Jnit-V	Introduction to analysis and quality controls of herbal products (TLC	C,08 hours					
	HPLC, IR, NMR, and mass spectroscopy). Pharmaceutical application of						
	alkaloids, terpenoids, glycosides, volatile oils, tannins and resins						
	Intellectual Property Rights - Regulatory Affair herbal pharmaceuticals -						
	Entrepreneurship						
	Management.						
Jnit-VI	Internal Assessments, Seminars, and Guest lecture	5 hours					
	Total Teaching hours						
nternal	Assessment Methods: (25 marks)	<u> </u>					
		otal marks					

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Reference & Text Books:

- 1. Harborne, J.B., 1998. Phytochemical methods to modern techniques of plant analysis. Chapman & Hall, London.
- Trease G. E, M. C. Evans, 1979. Textbook of Pharmacognosy12th ed. Balliere-Tindal, London.
 Irfan A. Khan and AtityaKhanum (Eds.). 2004. Role of Biotechnology in medicinal and

97

Aromatic plants, Vols. I-X.Ukaaz Publications, Hyderabad. Analytical techniques in DNA

sequencing edited by Brian K. Nunnally.

- 4. Agrawal S.S. and M. Paridhavi, Herbal Drug Technology, University press 2007.
- 5. Henry, R. J. 1997. Practical Applications of Plant Molecular Biology. Chapman & Hall, London, UK.
- 6. Bidlack, W.R., Omaye, S.T., Meskin, M.S.andTopham, D.K.W.," Phytochemicals as Bioactive Agents", 1St Edition, CRC Press, 2000.
 - 7. Sharol Tilgner, N. D. 1999. Herbal medicine From the heart of the earth. Edn. 1, Printed in

the USA by MalloyLithographing Inc.

8. Balasubramanian, Bryce, Dharmalingam, Green and Jayaraman (ed), Concepts in

Biotechnology, University, Press, 1996.

9. Anderson, F.J Illustrated History of the Herbals. New York: Columbia University press.

2009.

10. Callow, J. A., Ford-Lloyed, B. V. and Newbury, H. J. 1997. Biotechnology and Plant

Genetic Resources: Conservation and Use, CAB International, Oxon UK.

Gokhale, S.S,C.K.Kokate and A.P.Purohit (1994). Pharmacognosy. Niraliprakashan, Pune.
 Faroogi, A.A. and B.S.Sreeramu (2004), Cultivation of Medicinal and Aromatic crops.

University Press (India) P.Ltd., Hyderabad.

- 13. Pal. D.C and S.K. Jain (1998), Tribal medicine, Naya Prakash, 206, Bidhan Sarani, Calcutta.
 - 14. Thirugnanam, Akbarsha and Krishnamurthy (2010), Indian Medicinal plants and Home F

Course Material:

- 1. Rasheeduzzafar (2006), Medicinal plants of India, CBS publication.
- 2. International Journal of Herbal Medicine
- 3. Journal of Herbal medicine Elsevier
- 4. en.wikipedia.org/wiki/Herbal medicine

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

PO – Programme Outcome, CO – Course outcome, S – Strong, M – Medium, L – Low

PRACTICAL II LAB IN IMMUNOLOGY & GENETIC ENGINEERING

- 1. Blood grouping
- 2. Lymphocyte subset identification and enumeration.
- 3. Radial immuno-diffusiontest.
- 4. Ouchterlony double diffusion
- 5. Immuno electrophoresis
- 6. Rocket Immunoelectrophoresis
- 7. LatexAgglutination
- 8. Quantitative Precipitinassay
- 9. Complement fixationtest
- 10. ELISA
- 11. WesternBlotting
- 12. Antigen-antibody reaction (precipitation and agglutination reactiontests).

GENETIC ENGINEERING

- 1. Isolation of genomic DNA from the given sample and its molecular weight determination
- 2. Isolation of RNA from the given sample and its molecular weight determination
- 3. Isolation of plasmid DNA from the given sample
- 4. Restriction digestion of Lambda phage DNA
- 5. Ligation of DNA and analysis by electrophoresis
- 6. DNA amplification by PCR and RAPD
- 7. Preparation of competent cells and transformation by CaCl2 method and Selection of transformed colony by X-Gal method
- 8. Determination of molecular weight of proteins by SDSPAGE

SKILL ENHANCEMENT COURSE-I

(A) MUSHROOM CULTIVATION AND APICULTURE Total Hours per Week: 2

Credits: 2

Aim: To exploit possibilities and assist in building up a mushroom cultivation and apiculture

industry that will make a significant contribution to the general economy.

- 1. To make the students to know about mushroom and their types.
- 2. To enable the students to learn the mushroom spawn production conditions.
- 3. To make the students learn about mushroom cultivation and maintenance.
- 4. To make the students to know about apiculture scope and bee keeping and types.
- 5. To enable the students to understand the importance of honey and applications.

Course Out Comes (five outcomes for each units should be mentioned)

- 1. The student will be able to differentiate the edible and poisonous mushrooms.
- 2. The student will be able to develop mushrooms culture conditions.
- 3. The student will be able to practice the mushroom cultivation and production.
- 4. The student will be able to practice the bee keeping and culture maintenance.
- 5. The student will be able to produce and analyze the applications of honey in differentFields. **Matching Table (Put Yes / No in the appropriate box)**

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	Yes	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	Yes
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

UNIT I	History of Mushroom, cultivations and its practice, Introduction to mushroom cultivation, Classification of Mushrooms and different	t
	types, Edible Mushrooms, its types and their origin, Poisonous Mushrooms, its types and their origin.	5
UNIT-II	Introduction to mushroom cultivation, sources of beds and types Spawn, Sources, spawn run, cultivation set up, Culture ventilation and humidity management, temperature, lighting, moisture, pH CO2, Culture chambers preparation, sterilization, Instructions precautions, handling and sensors.	n ,
UNIT – III	Mushroom cultivation maintenance, conditions, and duration Spawn collection, preparation, storage, Spawning techniques Environmental conditions, temperature, moist, Fruiting initiation monitoring, maintenance and harvest.	,
UNIT – IV	Introduction to apiculture, definitions, history, scope, importance of apiculture, Bee Keeping methods practiced in world and in India, Traditional Bee keeping techniques, Modern Bee keeping methods, Urban Beekeeping methods.	
UNIT-V	Introduction to nutritional product of honey and its constituents Honey properties biological activities, medicinal values Applications of Honey in various fields, Honey types and value added honey products.	
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	30 hours

Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
Marks	15	05	05	25

Text book:

1. Paul Stamets, J.S. and Chilton, J.S. 2004. Mushroom cultivation A practical guide to growing mushrooms athome, Agarikon Press.

- 2. Tewan and Pankaj Kapoor S.C. 1993. Mushroom cultivation. Mittal Publication. Delhi.
- 3. Marimuth et al., 1991. Oyster Mushrooms. Dept. of Plant pathology, TNAU, Coimbatore.
- 4. Nita Bahl. 1988. Hand book of Mushrooms, 2nd Edition, Vol I & II.
 - 5. Shu Fing Chang, Philip G. Miles and Chang, S.T. 2004. Mushrooms Cultivation, nutritional value, medicinaleffect and environmental impact. 2nd ed., CRC press.
- 6. Prost, P. J. (1962). Apiculture. Oxford and IBH, New Delhi.
- 7. Bisht D.S., Apiculture, ICAR Publication.
- 8. Singh S., Beekeeping in India, Indian council of Agricultural Research, New Delhi **Reference Book:**

1. Laidlaw, H.H., 1997. Contemporary queen rearing. Published by Dadant and Sons. R. A. Morse, Rearing queen honeybees. Wicwas press, NY.

2. Alison Benjamin, By (author) Brian McCallum, 2008. Keeping Bees and Making Honey. David & Charles, NewtonAbbot.

3. Kim Pezza, 2013. Backyard Farming: Keeping Honey Bees: From Hive Management to Honey Harvesting and More.Hatherleigh Press, U.S.

4. Kim Flottum, 2014. The Backyard Beekeeper: An Absolute Beginner's Guide to Keeping Bees in Your Yard and Garden. Quarry Books.

5. Kannaiyan, S. Ramasamy, K. (1980). A hand book of edible mushroom, Today & Tomorrows Printers & Publishers, New Delhi.

6. Pandey B P 1996. A textbook of fungi.Chand and Company N Delhi. **Course Material:** website links, e-Books and e-journals

1.https://books.google.co.in/books/about/Mushroom_Cultivation_in_India.

2.https://books.google.co.in/books/about/Mushroom_Cultivation_in_India.html?id=6AJx99OGT KEC&redirhttps://

books.google.co.in/books/about/Mushroom_Cultivation_in_India.html?id=6AJx99OGTKEC&re dir

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	Μ	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	M	S	S	Μ	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

Mapping with Programme Outcomes

PO-Programme Outcome, CO-Course outcome, S-Strong , M-Medium, L-Low (may be avoided)

(B) VERMICULTURE TECHNOLOGY

Total Hours per Week: 2

Credits: 2

Aim: To exploit possibilities and assist in building up a Vermiculture technology in significant contribution to thegeneral economy.

Course Objectives

- 1. To enable the students learn about Vermiculture compositing.
- 2. To enable the students to know the humus cycle, soil transformation
- 3. To enable the students analyze the nutritional composition of vermicompost.
- 4. To enable the students to learn Vermiculture technology.
- 5. To enable the students to learn the harvest of vermicompost.

Course Out Comes (five outcomes for each units should be mentioned)

- 1. The student will be able to understand the Vermiculture and 4R's of recycling.
- 2. The student will be able to identify the decomposing organic matter and humus formation.
- 3. The student will be able to differentiate nutritional value of vermicompost and fertilizer.
- 4. The student will be able to practice the Vermiculture composting and maintain conditions.
- 5. The student will be able to produce Vermiculture compost, harvest the compost and application. Matching Table (Put Yes / No in the appropriate box)

Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	No	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	No
5	Yes	Yes	Yes	Yes	Yes	Yes

UNIT I	Introduction to Vermiculture technology, definition, meaning and history, Economic importance of Vermiculture, their value in soil texture, Concept of recycling, Concept of four r's reduce, reuse, recycle and restore.	5 hours
UNIT-II	Introduction to matter, types of matter, Introduction to Humus Humus cycle, Sources, quality of products for Humus formation, Ground population, and transformation process in organic matter.	
UNIT – III	Introduction of plant fertilizers, nutritional value and their importance, Vermicompost composition and its nutritional value. Importance of vermicompost as fertilizer for plants, Comparison of vermicompost with other fertilizers.	,
UNIT – IV	Introduction to vermibeds, sources, types, Preparation of vermibeds, measurements, Maintenance of vermicompost, Compositingconditions, moist, temperature, aeration.	5 hours
UNIT-V	Vermicompost identification, conditions, and separation, compost packing, sources and methods, Compost storage, conditions and durations, Vermicompost handling and transport.	5 hours
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
	Total Lecture hours 65 hours	30 hours

	Distribution for internals	Test (CIA I + CIA II + CIA III)	Seminars	Assignment	Total marks
N	Aarks	15	05	05	25

Text book:

- 1. Kevin, A and K.E.Lee (1989) "Earthworm for Gardeners and Fisherman" (CSIRO,Australia, Division of Soils)
- 2. Rahudakar V.B. (2004). Gandul khatashivay Naisargeek Paryay, Atul Book Agency, Pune.
- 3. Satchel, J.E. (1983) "Earthworm Ecology" Chapman Hall, London.
- 4. Wallwork, J.A. (1983) "Earthworm Biology" Edward Arnold (Publishers) Ltd. London.
- 5. Sultan Ahmed Ismail, 2005. The Earthworm Book, Second Revised Edition. Other IndiaPress, Goa, India. 2.Bhatnagar & Patla,2007.
- 6. Earthworm vermiculture and vermin-composting, Kalyani Publishers, New Delhi

Reference Book:

1. Bhatt J.V. & S.R. Khambata (1959) "Role of Earthworms in Agriculture" Indian Council of Agricultural Research, New Delhi 2.

2. Dash, M.C., B.K.Senapati, P.C. Mishra (1980) "Verms and Vermicomposting" Proceedings of the National Seminar on Organic Waste Utilization and Vermicomposting Dec. 5-8, 1984, (Part B), School of Life Sciences, Sambalpur University, Jyoti Vihar, Orissa.

- Edwards, C.A. and J.R. Lofty (1977) "Biology of Earthworms" Chapman and Hall Ltd., London.
 Lee, K.E. (1985) "Earthworms: Their ecology and Relationship with Soils and Land Use" Academic Press, Sydney. 5. Kevin, A and K.E.Lee (1989) "Earthworm for Gardeners and Fisherman" (CSIRO, Australia, Division of Soils)
- 5. Mary Violet Christy, 2008. Vermitechnology, MJP Publishers, Chennai.
- 6. Aravind Kumar, 2005. Verms & Vermitechnology, A.P.H. Publishing Corporation, New Delhi. Course Material: website links, e-Books and e-journals
- 1. Vermiculture Technology, Earthworms, Organic Wastes, and Environmental ManagementEdited By Clive

A. Edwards, Norman Q. Arancon, Rhonda L. Sherman,

2. <u>https://www.scirp.org/journal/paperinformation.aspx?paperid=2490</u>, **DOI:** <u>10.4236/ti.2010.13019</u>

Mapping with Programme Outcomes

<u> </u>	9									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	M	S	Μ
CO3	S	S	S	S	S	M	S	S	S S	S
CO4	S	М	S	S	Μ	S	S	S	S S	S
CO5	S	S	S	S	S	S	S	S	М	S

PO-Programme Outcome, CO-Course outcome S-Strong , M-Medium, L-Low (may be avoided)

C) VALIDATION OF MEDICINAL PLANTS

Total Hours per Week: 2

Credits: 2

Aim: The course aims to introduce the students to the identification and validation of medicinal plantand to understand the cultivation and propagation techniques. To understand the importance of medicinal plants in human health care.

Course Objectives

- 1. To enable the students to understand the importance of medicinal plants.
- 2. To enable the students to identify the medicinal plants.
- 3. To enable the students to learn the techniques of validation of medicinal plants.
- 4. To enable the students to learn the cultivation methods and maintenance of medicinalplants.
- 5. To enable the students to understand the importance of medicinal plant in human health. **Course Out Comes (five outcomes for each units should be mentioned)**
- 1. The student will be able to gain knowledge about importance of medicinal plant parts andits medicinal value.
- 2. The student will be able to classify the medicinal plants on Bentham and Hooker and Practice herbarium techniques.
- 3. The student will be able to identify the medicinal values of plants using different validation Techniques.
- 4. The student will be able to cultivate and propagate the medicinal plants
- 5. The student will be able to practice the usage of medicinal plants in treatment of humanDiseases.

match	ing rabic (ruc i	co/ no m the aj	ppi opi iaic bu	A)		
Unit	i. Remembering	ii.	iii. Applying	iv. Analyzing	v. Evaluating	vi. Creating
		Understanding				
1	Yes	Yes	No	Yes	No	No
2	Yes	Yes	Yes	Yes	Yes	No
3	Yes	Yes	Yes	Yes	Yes	No
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes	Yes	Yes

Matching Table (Put Yes / No in the appropriate box)

UNIT I	Introduction to Medicinal plants, meaning, definition and types Medicinal properties of plants and their importance, Medicina values in plant parts, fruits, stem, leaves and roots, Leaf, fruit, roo and stem modifications, aerial and underground.	
UNIT-II	Introduction to Medicinal plant identification, Elementary knowledge of binomial nomenclature, Bentham and Hooker classification, Herbarium, preparation and preservation.	
UNIT – III	Introduction to validation of medicinal plants, Macroscopic characteristics of medicinal plants, Microscopic characteristics of medicinal plants, Chemical compounds and tests of medicina plants, Chromatographic techniques for validation TLC, HPLC HPTLC & gas, Chromatography.	f 1
UNIT – IV	Introduction to medicinal plant cultivation, Cultivation techniques and factors affecting cultivation of medicinal plants, Propagation of medicinal plants and different methods of propagation Management and Maintenance of medicinal plants.	1
UNIT-V	Importance of medicinal value in plants, Medicinal properties of plants in human health and its role, advantages, Role of medicinal plants in prevention and treatment of human diseases, Traditional knowledge and utility of Indian medicinal plants.	1
UNIT-VI	Internal Assessment: Assignments, Seminars and Guest lecturers	5 hours
		30 hours

01	sinent methods. (20 marks)									
	Distribution for	Test (CIA I + CIA	Seminars	Assignment	Total marks					
	internals	II + CIA III)		_						
	Marks	15	05	05	25					

Text book:

- 1. Indian Medicinal Plants by P.C. Trivedi (2009).
- 2. Medicinal Plants of Indian Himalaya by S.S. Samant and U. Dhar.
- 3. Indian Medicinal Plants (Vol 1- 4) by K.R. Kirtikar and B.D. Basu (2006).
- 4. Indigenous Medicinal Plants Social Forestry & Tribals by M.P. Singh et al. (2003).
- 5. Ayurvedic Drugs and their Plant Sources by V.V. Sivarajan & I. Balachandran, Oxford &IBH (1994).
- 6. The Handbook of Ayurveda Shantha by Godagama, Bishen Singh Mahendrpal Singh, Dehradun (2004).
- 7. Direct uses of medicinal plants and their identification by Vardhana, Sarup and Sons, Ansari Road, Dariyaganj,

New Delhi (2008).

8. Medicinal plants, applied biology of domestication and export by K. Singh, S.K. Tyagi, Bishen SinghMahendrapal Singh Dehradun.

- 9. Quality Control Methods for Medicinal Plants Materials, W.H.O. (1998).
- 10. Evaluation of herbal medicinal products by Houghton

Reference Book:

- 1. A Class Book of Botany. A.C. Dutta. Oxford University Press.
- 2. Cultivation of Medicinal Plants by C.K. Atal & B.M. Kapoor.
- 3. Hartmann, H.T & Kester, D.E (1989). Plant Propagation Principles and Practices. PrenticeHall of India.
- 4. Awadesh N, Ghoeami A and Sharma R, Indigenous Health Care and Ethnomedicine, Sarupand Sons.
- 5. Medicinal Plants Cultivation: A Scientific Approach by S.S. Purohit, (2004).
- 6. Bruneton Jean, Caroline K. Hatton, Pharmacognosy, Phytochemistry, Medicinal plants.Lavoisier, 1999.ISBN 1898298637.
- 7. Nikolaus J. Sucher, Maria C. Carles, Genome-Based Approaches to the Authentication of Medicinal Plants. Planta Med., 74: 603–623; 2008.

8. WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants, World HealthOrganization, Geneva, 2003.

9. Iqbal Ahmad, FarrukhAqil, and Mohammad Owais, Modern Phytomedicine: Turning Medicinal Plants intoDrugs. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006. ISBN-10: 3-527-31530-6.

10. Ved D.K. & Goraya, G.S. Demand & supply of medicinal plants in India, NMPB, New Delhi & FRLHT, Bangalore, India, 2008.

Course Material: website links, e-Books and e-journals

2.Planta Medica, Issue 13 · Volume 79 · August 2013. <u>https://www.thieme-</u>connect.com/products/ejournals

3. <u>https://www.sciencedirect.com/book/9780128008744/evidence-based-validation-of-herbal-medicine.</u>

3.https://www.tandfonline.com/doi/citedby/10.1080/13880200902800196?scroll=top&needAcces s=true.

4. Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	S	М	S
CO2	S	S	Μ	S	S	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	M	S	S	Μ	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

 $PO-Programme\ Outcome,\ CO-Course\ outcome,\ S-Strong\ ,\ M-Medium,\ L-Low$

For question paper settingANNEXURE - III

Q. No.	COs	i.	ii.	iii.	iv.	v.	vi.
-		Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
PART -	A (Two ques	tions from each ca	tegory except vi. C	reating)	•	L L	
1.	CO1	1	Nil	Nil	Nil	1	Nil
2.	CO1	Nil	Nil	Nil	1	Nil	Nil
3.	CO2	Nil	1	Nil	Nil	Nil	Nil
4.	CO2	Nil	Nil	1	Nil	Nil	Nil
5.	CO3	Nil	Nil	Nil	Nil	Nil	Nil
6.	CO3	Nil	Nil	Nil	1	Nil	Nil
7.	CO4	Nil	Nil	Nil	Nil	1	Nil
8.	CO4	Nil	Nil	Nil	Nil	Nil	Nil
9.	CO5	Nil	Nil	1	NII	Nil	Nil
10.	CO5	1	Nil	Nil	1	Nil	Nil
PART –	B (At the lea	st one question fro	m each category n	ot more than	two questions	from one catego	ry)
11. A.	CO1	Nil	Nil	1	Nil	Nil	Nil
11. B.	CO1	Nil	Nil	Nil	Nil	1	Nil
12. A.	CO2	Nil	Nil	1	Nil	Nil	Nil
12. B.	CO2	Nil	Nil	Nil	1	Nil	Nil
13. A.	CO3	Nil	Nil	Nil	Nil	Nil	1
13. B.	CO3	Nil	Nil	Nil	Nil	1	Nil
14. A.	CO4	1	Nil	Nil	Nil	Nil	Nil
14. B.	CO4	Nil	1	Nil	Nil	Nil	Nil
15. A.	CO5	Nil	Nil	Nil	Nil	1	Nil
15. B.	CO5	Nil	Nil	Nil	Nil	Nil	1
	C (One ques	tion from each cate		embering)			
16.	CO1	Nil	Nil	Nil	1	Nil	Nil
17.	CO2	Nil	Nil	Nil	Nil	Nil	1
18.	CO3	Nil	1	Nil	Nil	Nil	Nil
19.	CO4	Nil	Nil	Nil	Nil	1	Nil
20.	CO5	Nil	Nil	1	Nil	Nil	Nil
Total M	arks *						

BLOOM TAXONOMY QUESTION PAPER SETTING CHECKLIST

* Not exceeding 24 total marks in each category of (ii), (iii), (iv) and (v). Not exceeding 14 marks in category (i) and 20 marks in category (vi).

Revised Bloom - Anderson 2000 Taxonomy: Code and Verbal Content						
Definitions	i. Remembering	ii. Understanding		iv. Analyzing	v. Evaluating	vi. Creating
Bloom's	Exhibit memoryof		Solve problems		Present and	Compile
Definition	learned material	understanding of	tonew	break	defend opinions	information
		facts and ideas by	situations by	information into	by making	together in a
	terms, basic,	organizing,	applying	parts by	judgments about	different wayby
	concepts, and	comparing,	acquired	identifying	information,	combining
	answers.	translating,	knowledge,		validity of ideas,	-
		interpreting,	facts,		or quality of work	
		giving,	techniques and		based on a setof	
		descriptions, and				alternative
		stating main ideas		support		solutions
				generalizations		5010110115
Verbs	1.1: Choose	Classify	Apply		-	Adapt
	1.2:Define	Compare	Build			Build
	Find	Contrast	Choose	Categorize	Assess	Change
	How	Demonstrate	Construct	Classify	Award	Choose
	Label	Explain	3.6 Develop3.7	Compare	Choose	Combine
	List	Extend	Experimentwith	Conclusion	Compare	Compile
	Match	Illustrate	Identify	Contrast	Conclude	Compose
	Name	Infer	Interview	Discover	Criteria	Construct
	Omit	Interpret		4.9 Dissect4.10	Criticize	Create
	Recall	Outline			Decide	Delete
	Relate	Relate	3.11 Model		Deduct	Design
	Select	Rephrase	3.12 Organize	Divide		Develop
	Show	Show	-		5.13 Determine	Discuss
	Spell	Summarize	Plan		Disprove	Elaborate
	Tell	Translate	Select		Estimate	Estimate
	What	Tanslate	Solve	•	Evaluate	Formulate
	When		Utilize			
	-				5.17 Explain5.18	
	Where			4.18 Relationships		Imagine
	Which				Influence	Improve
	Who			,	Interpret	Invent
	Why			4.21 Take partin	-	Make up
					,	Maximize
				Theme	Mark	Minimize
					Measure	Modify
					Opinion	Original
					Perceive	Originate
					Prioritize	Plan
					Prove	Predict
					5.29 Rate 5.30	Propose
					Recommend	Solution
						Solve
						Suppose
					Support	Test
					Value	Theory

Revised Bloom - Anderson 2000 Taxonomy: Code and Verbal Content

Technical Terms – Definition

Programme Objectives:

Total papers, teaching, learning and evaluation comes under programme. Aim of the study including theoretical, practical courses.

Programme Educational Objectives:

Program educational objectives are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

Programme Specific Outcomes:

Program specific outcomes are statements that describe what the Post Graduates of a specific Science Programme should be able to do.

Programme Outcomes:

Programme outcomes describe what students are expected to know and would be above to do by the time of Post-Graduation. These relate to the skills, knowledge, and behaviours that students acquire as they progress through the program.

Course Objectives:

Aim of the paper including unit wise contents.

Course Outcomes:

Statements indicating what a student can do after the successful completion of a course. Every course leads to some course outcomes. The Course Outcomes statements are defined by considering the course content covered in each module of a course. For every course there may be 4 or 5 course outcomes. The keywords used to define course outcomes are based on Bloom's Taxonomy.